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ABSTRACT: Water inflow should be carefully evaluated when the new application of 
existing underground space to emergency shelter is considered. In this report, fundamental 
theory of MPS to calculate incompressible water flows is reviewed with numerical 
examples of a MPS model. A simple model to calculate Dambreak problem with polygon 
wall boundary, to verify the incompressibility of the calculation result, is proposed.  
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INTRODUCTION 
 

Generally, underground space is thought to be exposed to less seismic impact than buildings mostly 
constructed on the ground. For the preparation of shelter space in emergency, and thinking earthquake 
is typical disaster to be prepared, it is important to notice that there are a lot of available under ground 
spaces in Japan. On the other hand, flood due to heavy rain, high-tide or Tsunami is also devastating 
and rather frequent disaster in Japan. Therefore, when we convert the existing underground facilities to 
emergency shelters, it is very important to know how water flows into the facilities and how we can 
control it. In Japan, so far, the most of evacuation facilities for tsunami have been set at a high place, 
such as Tsunami evacuation tower or evacuation places set on hills. However, it is apparently very 
difficult to follow quick evacuation for those who cannot evacuate by themselves such as elders or 
patients staying in hospitals. From such a point of view, even for flood, evacuation to underground 
space can be a reasonable alternative because it is much easier for them. For examining safety of 
underground space during flood, Kanai[1] applied Pond Model numerical simulation for Shibuya 
underground malls , as an example. Although pond model is a good simple method to see the general 
progress of the flow, it cannot tell the dynamic physical impact of water. This paper introduces 
Moving Particle Simulation (MPS) method as a Computational Fluid Dynamics (CFD) solution to 
know more details and impacts than Pond Model. 
This paper reports a fundamental theory of the explicit MPS to solve Navier-Stokes eq. with polygon 
boundary. And then its problem of modeling is described, and a solution is proposed. The results of the 
program presented in this paper is compared against that of existing one. 
 
 

FUNDAMENTAL THEORY OF MPS FLUID ANALYSIS 
 

MPS method was developed as a solving procedure for incompressible flow in 1996 by Koshizuka et 
al[2].  Space domain for calculation is discretized as moving particles on Laglange’s coordinate system, 
and each particle interacts with its infinite neighbor particles. These interactions are considered as 
interaction models of each differential operators such as gradient, divergence and Laplacian in the 
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formulation. It can be adaptable for not only fluid dynamics but other problems by solving Navier-
Stokes equations. 

 
1.Discretization 
In usual MPS method, space domain as fluid and wall boundary as solid are discretized in particles as 
indicated in Fig3 (a). For calculating pressure of wall boundary, with the same algorithm for fluid, it 
needs to be prepared as 3 or 4 layers of wall particles[2].It usually causes high calculation load and 
difficulties for expressions of thin wall. Thus, polygonal wall boundary[3] is used in this report indicated 
in Fig1 (b). 
 

  
 

Figure 1   Discretization 
 
2. The weight function and the particle number density 
 
Particle interaction in MPS method uses the weight function that can be expressed as 
 

 w������� = 	�
 ������ − 1              �0 < ����� < �
�
0                             ��
 < ������  (1) 

where ����� is the distance between particle i and j, �
 is effective radius.  
 
The particle number density of particle i is calculated as 

 �� = � w����������  (2) 

To calculate average with weight for each interaction models, the particle number density of a particle 
which has enough neighbor particles in its effective radius is calculated before computing and it is 
labeled as ��. 
 
3. Wall weight function 
For calculating the distance between a particle and polygons in a 2-dimentional space, Eq(3) is used. 
 

 |���| = ������� + ����� + � ����! + ���"���� + ��� + �� + ���  (3) 

 
where |���| is the distance between particle i and neighbor wall polygon, �� to �" are distances from 
lattice points A to D to each closest polygons, respectively. ��,��(� ,��) are the internal division ratio of the 
particle i on an x direction (or y direction) lattice edges (figure 1). The normalized normal vector n of closest 
polygon from a particle is calculated as 
 

 # = $ |$|%  (4) 

(b) Plygon wall (a) Particle wall 
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For using Eq(3) and Eq(4), the domain space is required to be divided into lattices. The distances 
between all lattice points and every polygon wall are calculated. Then a database of minimum distances 
from lattice points to the nearest polygon walls is established before the computation starts. During 
computing, �� to �" of Eq(3) and Eq(4) are calculated from this database. 

 
Figure 2   Parameters in Eq(3)  

Figure 3  Domain space divided into lattices 
 
The contribution of particle number density from wall (Z value) is calculated with this |���| using 
another database. To establish this database, Z value of some particles, which is put on discretized distances 
(as 0.1+�, 0.2+�, ⋯) from a polygon, are calculated with pseud wall particles. An example of which effective 
radius is 4.5+� is indicated in Fig3. During computation, the contribution of a particle number density of a 
particle is calculated with linear interpolation of this database. 
 

 
(a) ��� = +� 

 
(b) 012 = 3. 454  

(c) ��� = 3.0+� 
Figure 4  calcuration of Z value 

 
4. Interaction model to solve Gradient 
In polygon-wall-boundary approach, the contribution from fluid particles and wall boundaries are 
separately calculated as 
 

 

〈∇9〉� = 〈∇9〉�; + 〈∇9〉�� 

〈∇9〉�; = <�� � =�9� − 9���0� − 0���0� − 0��� > ?��0� − 0����∈ABCDEF
 

〈∇9〉�� = − GΔI� 0��|0��| �+� − |0��|� 

(5) 



 
where 〈∇9〉�  is the gradient of scalar function 9  at a point of particle i, 〈∇9〉�; ��<〈∇9〉��  are 
interactions from fluid and wall particles respectively, d is the dimension of the domain space (2 or 3), 9� ��<9� are value of scalar function on particle i and, j, 0�  ��< 0� are  position vectors of particle i and 
j, respectively. G is density of a particle, ΔI is increment of time and +� is distance between particles in 
the initial condition. 
 
5. Interaction model to solve Laplacian 
A Laplacian of a vector function J of particle i at a point is calculated as 
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〈∇�J〉�� = 2<��K �J� − J��L�|���|� 

(6) 

 
where K is a coefficient calculated for each particle, which has enough neighbor particles in its effective 
radius, given as 
 

 λ = ∑ ?��0� − 0����0� − 0���
∑ ?��0� − 0���  (7) 

 
5. Algorithm for the fluid analysis 
The governing equations for incompressible flows, the mass conservation and Navier-Stokes 
equation, can be written as 
 

 
OGOI = 0 (8) 

 
OPOI = − 1G ∇Q + R∇�P + S (9) 

 
Fig5 shows the flow chart used in this report. Firstly, initial conditions are defined. This 
includes (1) dividing the space domain for analysis into lattices and making database of 
minimum distances between each lattice point and polygon walls, (2) setting initial position of 
the fluid particles and (3) setting other parameters such as acceleration of gravity g, distance 
between particles +� and so on. 
At each step, e.g. step k, velocity and position vector JT, 0T are updated using gravity and 
viscosity terms as 
 

 
J�∗ = J�V + ∆tYR〈∇�J〉� + SZ 0�∗ = 0�V + ∆tJ�∗ 

(10) 

 
where 〈∇�J〉� is calculated with Eq(6). The subscript 〈 〉∗ is for “temporary” because simply 
updated position of fluid particles by Eq(10) does not satisfy Eq(8). J�∗  and 0�∗  should be 
modified with pressure gradient term to satisfy Eq(8). The pressure is calculated as 
 

 Q�V[� = \� G�� ���∗ − ��� (11) 

 
where Q� is the pressure at the point of particle i, c is the temporary sound velocity, 22m/s is 



used in this report, ��∗ is the particle number density calculated at the point of particle i with 
temporary particle positions. With this pressure, pressure gradient terms are calculated with 
Eq(5) and J�∗ and 0�∗ are modified as 

 
J�V[� = J�∗ − ∆t 1G 〈∇P〉� 
0�V[� = 0�∗ − ∆I� 1G 〈∇P〉� (12) 

 
Figure 5  Flow chart of MPS analysis 

 
6. Modeling feature in edge of Polygon wall 
Modeling examples around wall edge with walls expressed as particles and polygons are shown 
in Fig6 (a) and (b) for each. Usually, both fluid particles and wall particles are put at an even 
interval +� for each as shown in Fig6 (a). In Fig6 (b), ��� values calculated with Eq(3) of each 
domains are shown with contour color, and a line is put on the domains of which ��� value is 
equal to +�. The line where ��� = +� become rounded by approximate calculation. Thus, if fluid 
particles are put on same positions at initial condition shown in Fig6 (a), ��� value of fluid 
particle put on the edge is less than +�, which means penetration of fluid particle at initial 
condition. This penetration causes high pressure at the position of penetrated particle and 
accelerates its neighbor particles at initial condition. Thus, this special phenomenon should be 
paid an attention in making a model around wall edge. 
 

 
(b) condition by meaning of polygon modeling 

 
(b) condition by meaning of wall particle modeling  

Figure 6  A feature of polygon wall modeling 



 
RESULTS AND COMPARISONS OF CULCULATIONS 

 
Dambreak problem is often used as a bench mark to verify the results obtained by newly proposed method 
through the comparison with well-examined results of conventional programs or experiments[2]. The Model 
of dambreak problem is shown in Fig7 and two types of an edge model are shown in Fig8. All fluid particles 
are put at even distance in model A as indicated in Fig8 (a), while a part of edge particles are removed in 
model B as indicated in Fig8 (b). 
 

 
Figure 7 Dambreak model 

 
 
 

 
 
 

Figure 8 Modeling of edge 
 
Pressure value of each particle at initial conditions of both model A and B are shown in Fig9 and the results 
of simulations are shown in Fig10. In the model A, very high pressure is generated by edge particles, thus, 
as shown in Fig10 (a), model A causes divergence of calculation. On the other hand, there are no particle 
with such a high pressure observed in the model B, and the calculation is successfully done as shown in Fig10 
(b).  
 
 
 

 
 

 
 

Figure 10 Results of Damberak model 

 
 

Figure 9 Pressure at initial condition 
 

 

model A 

model B 

(b) model B (a) model A 

model A model B 



As a bench mark problem, the time histories of the leading-edge, whose horizontal velocity is depends on its 
incompressibility, are compared. The time vs. leading-edge relationship of the program of this report with 
the result of Koshizuka’s one[2] is shown in Fig11. The result of this report is indicated in orange line, which 
closely stays with Koshizuka’s results and slightly closer to experimental results. Validity of efficient removal 
of edge particles, proposed here, is verified in this example. 
 

 
Figure 11 Time-Leading edge relationship[2] 

 
 

CONCLUSIONS 
As explained in the Section2, the space domain is discretized into moving particle, and 
intersection models for each particle about differential operators as gradient, divergence and 
Laplacian are prepared in MPS method. The theory to solve Navier-Stokes equation with these 
intersection models was also reviewed in Section 2. 
In the numerical example in the Section3, a modeling of which edge particles are efficiently 
removed is proposed and verified by solving bench mark problem and being compared with  
other reasonable results. 
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