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ABSTRACT: On February 9, 2010, a natural landslide dam at Hattian Bala of Pakistan, 
which was formed in the Oct 8, 2005 Kashmir earthquake, failed due to incessant rains. 
The landslide dam was formed of mainly crushed mudstones and sandstones which can 
be easily deteriorated through their slaking process. Under this threat, we had made four 
surveys to monitor the landform changes at about half-year’s regular interval since June 
2008. The back erosion at the toe part of the dam was first observed in the third field 
survey of June 2009. GPS-measured displacements conducted in both June and 
November 2009 showed a settlement of the crest part and slight uplift near the toe where 
the overflowed water fell in the eroded gully. We performed slaking and direct shear tests 
on prepared samples of crushed mudstones and sandstones with some materials taken 
in-situ to understand slaking effects on their stress-deformation characteristics. A 
significant creep deformation and a reduction in the peak strength were observed as the 
slaking developed in the mudstone specimens that might be responsible for triggering the 
landslide dam failure.  
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INTRODUCTION 
 
The October 8, 2005 Kashmir earthquake of magnitude 7.6 Mw (USGS) hit seriously Kashmir and 
other northern areas of Pakistan. The number of victims in the catastrophe amounts to 87,350 in 
Pakistan (Hussain et al., 2006). The earthquake triggered a huge landslide that buried more than 1,000 
people in Parhore valley of Hattian Bala. The landslide debris formed natural dam comprising about 
85 million m3 and blocked the streams of the Karli and Tung valley as shown in Fig. 1 and Photo 1. 
Two lakes impounded by the dam had been threatening downstream villages with the possible 
flooding risk. With its scale and serious threat, the landslide dam has been attracting attentions of 
many researchers including Dunning et al. (2007), Owen et al. (2008) and Schneider (2009). 

On 9th February 2010, the landslide dam failed after 5 days of rainfall as shown in Photo 2. The 
discharged water reportedly destroyed dozens of houses and killed one child, and the flood inundated 
several downstream areas (The News, 2010). Sattar et al. (2010) conducted dam break analysis before 
                                                  
1 Associate Professor 
2 Professor 
3 Graduate student 
4 Graduate student, Tokyo University of Science 
5 Under graduate student, Tokyo University of Science 
6 Senior Research Engineer, RTI, Tobishima Co. Ltd. 

Bulletin of ERS, No. 43 (2010)

－35－



this event and reported that though the Karli and Jhelum rivers would be capable of conveying the 
major flood wave, infrastructures on low terraces could be affected by the flood wave.  

Since the landslide dam appeared in the 2005 Kashmir earthquake, we had been paying attention to 
any possible changes that would affect the stability of the dam. The landslide dam was composed 
mainly of mudstones and sandstones which used to form the original slope. These sedimentary rocks, 
especially mudstones, are particularly susceptible to potential slaking due to seasonal climate change 
which can have caused the destabilization of the dam.  

Since June 2008, we have been conducting field surveys twice a year to measure the landform 
changes of the dam. The effects of slaking on the mechanical properties of mudstones and sandstones 
retrieved from the site were examined by performing a series of drying-wetting tests, i.e. a series of 
so-called accelerated slaking tests. Meanwhile, direct shear tests on the mudstone retrieved from the 
site and on Chiba gravel (gravelly soil representing sandstone), were conducted in order to verify the 
slaking effects on their stress-deformation characteristics. 

In this report, the landform changes of Hattian Bala landslide dam based on the field surveys 
between June 2008 and November 2009 are first presented, and then attempt is made to explain the 
mechanism of the failure of landslide dam through the experimental approach.  
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Photo 2  Hattian Bala landslide dam before and after failure (photography from upstream) 
 
 

LANDFORM CHANGES AT HATTIAN BALA LANDSLIDE DAM 
 
Field observations  
The landslide dam formed by the 2005 Kashmir 
earthquake consists of both sandstones and 
mudstones from Murree formation. Deposited debris 
mass was composed of rocks that were expected to 
be weathered easily because of their weak and 
slakable features as shown in Photo 3.  

Photos 4 to 8 compare scenic photos of landslide 
dam taken in June 2008 and November 2009. The 
landform changes of the dam seemed to be 
insignificant except for the backward erosion at the 
toe part of landslide mass first observed in June 
2009.  
 
 
 
 

  
 
Photo 4  Dam water flow into the spillway at the crest part (point A, latitude 34.137885°, longitude 
73.732342°, c.f. Fig. 2). The spillway seems to be unchanged after 2 years.   

Photo 3  Mudstone of Murree formation 
weathered by slaking around the middle 
portion of landslide dam (point C, c.f. Fig.2)

Nov. 2008

Nov. 2008 Nov. 2009

Nov. 2005 Feb. 2010

Courtesy of Prof. Jean F. Schneider
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Photo 5  Middle portion of the dam (photography the downward from point B, latitude 34.138185°, 
longitude 73.730911°, c.f. Fig. 2) 
 

  
 
Photo 6  Middle portion of the dam (photography the westward from point B, latitude 34.138185°, 
longitude 73.730911°, c.f. Fig. 2). There was little change on the dam surface for 2 years) 
 

  
 
Photo 7  Source area of landslide mass (photography from point C, latitude 34.138562°, longitude 
73.728825°, c.f. Fig. 2). The spillway can be seen near side of the source area. There was little change 
on the slope for 2 years. 
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Photo 8  Toe part of the dam (photography the downstream from point D, Latitude 34.138564°, 
Longitude 73.725544°,c.f. Fig. 2). Significant erosion could be observed along spillway in the survey 
in June 2009 after that in November 2008. 
 
 
GPS measurement  
In order to investigate the deformations of the landslide dam in a quantitative mannar, we measured 
longitudes, latitudes and elevations of points marked on the landslide dam with dual-frequency 
Differential Global Positioning System (DGPS) in June and November 2009. In-plane displacement 
vectors of the points marked on both longitudinal and transverse lines are superimposed on the contour 
map of the landslide dam in Fig. 2, while the vertical displacement vectors are shown in Fig. 3. Note 
that the longitudinal line runs along the spillway while the transverse line extends from the toe of 
source hill to the eastern end of the debris mass. 

Meanwhile, the perimeter of the erosion gully shown in Photo 8 was also measured with the GPS 
receiver in June 2009 and November 2009. The two perimeters traversed at different times of the year 
were about identical with each other (Fig. 2), and showed little sign of progressive erosion during the 
half-year period. 

Figs. 2 shows that in-plane deformations are up to or comparable to 5 cm, No trend for the in plane 
movement vectors was observed indicating that the local deformations were dominant at the marked 
GPS points instead of integral body movement. On the other hand, the maximum settlement of about 
10 cm was reached near the crest with the greatest thickness of dynamically placed loose debris mass 
presumed, while a slight uplift was observed where the spillway water falls in the gully eroded near 
the toe of the debris mass. 
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Figure 2  Deformation vectors superimposed on contour map generated using 5 m resolution DEM 
(after Sattar et al., 2010) 
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Figure 3  Settlements of landslide dam from June 2009 till November 2009 (after Sattar et al., 2010) 
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SLAKING TEST 
 
Many cones of weathered fragments of mud rocks (Photo 3) and reddish water marks of finer 
substances remaining on rocks along the spillway (Photo 8) indicate that the mudstones there are 
highly susceptible to deterioration due to both weathering and slaking. The weathering/slaking process 
of the mudstones and sandstones may have accelerated removal of finer substances from the interior of 
the dam by seeping waters, and thus the breaching of the dam. To discuss this possibility, simple 
slaking tests were conducted on the rock samples taken from the landslide mass. 
 
Testing procedure  
Accelerated rock slaking tests were conducted according to the guideline No. JGS 2125-2006 edited 
by the Japanese Geotechnical Society.  

Each specimen, approximately 50 cm3 in volume, was successively subjected to oven-drying at a 
temperature of 40 �C for 24 hours followed by a complete immersion in distilled water for another 24 
hours time. In the immersion process, distilled water was poured into a 20cm-diameter container until 
the specimen is fully immersed (approximately within 1 minute). This drying-wetting cycle was 
repeated three times.  

To see the changes in shapes and colors of beddings and/or laminae, each specimen was 
photographed before the immersion, within 1 minute (t= 0 min hereafter), at 30 min., 1 hour, 2 hours, 
6 hours. and 24 hours elapsed times after pouring. Then the slaking extents of all samples were 
classified based on the features of deterioration illustrated in Table 1. 

 
Test results  
Figures 4 and 5 show inferred slaking classes of sandstone and mudstone specimens with respect to 
the immersion time. Photos 9 and 10 show respectively the pictures of the sandstone and mudstone 
specimens. In both, pictures to the left and right were taken before testing and after the third 
drying-wetting cycle, respectively.  

Fig. 5 and Photo 10 show that the mudstone specimen is sensitive to the duty cycle for accelerating 
slaking, while Fig. 4 and Photo 9 show little sign of slaking of the sandstone specimen  (estimated 
slaking class = 0). Small cracks and small bubbles showed up on the surface of the mud specimen 30 
minutes after the first pouring. The mudstone specimen however did not show any further changes in 
the subsequent wetting/drying cycles, and their shapes were kept intact (estimated slaking class = 1).  

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Class 

There is no change. Or iginal shape
remains with a few 
cracks. 

Many cracks  appear,
specimen is divided
into some fragments,
and original shape 
can be recognized. 

Who le body has  
cr umbled; ho wever,
not mudd y. Original
shape cannot be 
recognized. 

Whole body is  muddy. 

There is  no change. Orig inal shape 
remains with a few 
cracks  or with light 
circu mferential 
disintegration. 

Circumference has
crumbled and it is  
difficult to recognize
original shape. 

Circumference has  
cr umbled completely
and separated into 
many particles. 
Original shape cannot
be recognized. 

Whole body is  sandy. 

A: Typical s tates for muds to ne or fine-grained tuff B: Typical s tates  for siltstone, sandstone or coarse-grained tuff 

Table 1  Definition of slaking classes (after guideline JGS 2125-2006) 
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Figure 4  Change in slaking class of sandstone sample during accelerated slaking test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5  Change in slaking class of mudstone sample during accelerated slaking test 
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DIRECT SHEAR TEST 
 
In order to investigate the slaking effect of the rock materials on their strength, a series of direct shear 
tests were performed. However, sandstones on site were a little too much solid for the direct shear tests. 
Therefore samples used in the tests were the mudstones from the landslide site and gravelly soils 
comprising crashed sandstones (Chiba-gravel in Japan). The Chiba-gravel examined was highly 
resistant to slaking, and was considered as a good substitute of the sandstone specimen from the 
landslide site.  

Specimens of mudstone and Chiba gravel were prepared by removing particles finer than 2 mm and 
larger than 4.75 mm, then oven-dried at a temperature of 100 �C. The specimens were not compacted 
to prevent particle breakage and to realize the similar conditions of the landslide dam, which was 
deposited loose without compaction. 
 
Testing apparatus and procedure  
The direct shear apparatus used in this study is shown in Fig. 6. Vertical and shear stress components, 
�v and   were measured with the load cells, while the vertical and shear displacements (d and s) were 
measured with the Linear Variable Differential Transformers (LVDTs). The signals from these sensors 
are conditioned by a computer and returned to the loading system to realize either prescribed 
displacement or loading rates (See more details in Duttine et al., 2008). The initial specimen size is 12 
cm in widths and 14 cm in height, having 2 cm opening between the upper and lower boxes (No. 9 and 
10 in Fig.6).  

Testing conditions for the examined specimens are shown in Table 2. In this study, loading process 
during the test consists of three stages as shown in Fig. 7. First, the specimen was subjected to 
consolidation with shear stress ratio,  /�v, set at 0.5, and both stresses  !and �v steadily increased up to 
50 kPa and 100 kPa, respectively. The shear stress ratio of 0.5 was determined simply from the 
maximum slope angle (about 28 degrees) of Hattian Bala landslide dam. After   and �v reached the 
initial stress condition, the specimen was subjected to a sustained loading (creep loading) for six hours 
followed by a monotonic shear loading until it failed. In addition, in order to understand the slaking 
effects of the rock materials on their stress-deformation characteristics, some specimens were 
subjected to saturation after 3 hours creep while keeping the initial stress condition ( = 50 kPa and �v= 
100 kPa).   
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Table 2 Tested materials 
No. Sample Specimen condition 

during creep at R= 0.5 
Initial density 
�0 [g/cm3] 

Density before ML
�1 [g/cm3] 

CG1 Chiba gravel 6 hr (dry) 1.393 1.450 
CG2 Chiba gravel 3 hr (dry) and 3 hr (saturated) 1.393 1.455 
MS1 mudstone 6 hr (dry) 1.393 1.458 
MS2 mudstone 3 hr (dry) and 3 hr (saturated) 1.393 1.498 

 
 
Test results  
Figures 8 and 9 show time histories of shear displacements of Chiba gravel (CG1, CG2) and mudstone 
specimens (MS1, MS2), respectively. During creep loading, initial stress components ( = 50 kPa and 
�v= 100 kPa) were kept unchanged. In the case of CG1 and MS1, the creep shear displacement 
gradually increased as the time went on, and then the buildup of displacements was almost terminated 
after 6 hours creep.  

Once the specimens were saturated however in the middle of their creeping process, they exhibited 
a sudden increase in the deformation rate because of their slaking features. This increase is particularly 
clear in the mudstone specimen (MS2). The sudden increase in the shear displacement of 2 mm for the 
mudstone specimen is approximately eight times as large as the one for the Chiba gravel specimen 
(CG2). 

Figures 10 and 11 show the variations of shear stress ratio,  /�v, and shear displacement, s, with 
respect to vertical displacement, d, in the monotonic loading tests of Chiba gravel and mudstone, 
respectively. It is noted in these figures that the monotonic loading started at  /�v = 0.5 because the 
specimens had been subjected preliminarily to shear stress condition ( = 50 kPa and �v= 100 kPa) in 
their creep tests.  

The stress-deformation curves for Chiba gravel samples in Fig. 10 are less sensitive to either drying 
or wetting process, while those for the mudstone specimens are highly susceptible to the change in the 
degree of saturation. The curves for dry specimen of mudstone (MS1) in Fig 11 exhibit clearly some 
dilative and strain-softening features like those for Chiba gravel samples (CG1 and CG2). On the other 
hand, the saturated mudstone specimen (MS2) did not show the strain-softening behavior and the 
specimen continued to be compressed during the shearing without exhibiting any dilative features. 
Such stress-deformation characteristics were generally common to soft soil materials, indicating that 
the mechanical properties of the examined mudstone deteriorated through its slaking process due to 
wetting during the creep loading. 
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DISCUSSION AND CONCLUSIONS 
 
From the slaking test performed on the mudstone and sandstone samples retrieved on the site, it can be 
derived that the slaking level of the mudstone was slightly higher than the one for the sandstone. From 
the direct shear tests performed on the mudstone and Chiba gravel samples, it can be concluded that 
the slaking-induced shear deformation of mudstone at constant shear stress was much larger than that 
of Chiba-gravel, a good substitute of the extremely hard in-situ sandstones. The peak strength of 
mudstone specimen has weakened through its slaking process before shearing.  

Based on the above features of mudstones examined herein, it will be justified to think that slaking 
that has been built up in the interior of the landslide dam was a possible cause of accelerating the dam 
breaching. It is to be noted that the dam failed on 9th February by the heavy rain after drought. 
Murasawa and Konishi (1986) performed a series of slaking tests on mudstone samples having 
different initial degrees of saturation. They reported that the slaking level became higher as the initial 
degree of saturation of the specimen became lower, and the slaking could not be active unless the 
initial degree of saturation was lower than 80 %.  

As we mentioned previously, there was significant erosion at the toe part of landslide dam during 
dry season (between November 2008 and June 2009) while no clear and visible sign of landform 
change was observed during rainy seasons (between June 2008, 2009 and November 2008, 2009). In 
fact, it was exactly dry season when the landslide dam failed. It may be considered that the significant 
slaking has caused rapid reduction in the strength of the dam that was mainly formed by mudstones 
and therefore buildup of deformations simultaneously, and then the dam body failed due to the 
increase in the water level of the Karli lake, which can have caused an increase in a hydraulic grade in 
the dam body as well as the spillway discharge, accelerating the progressive breaching.  

At the present time, we need to gather as many pieces of information as possible from the site and 
from other sources in order to understand the failure process of the Hattian Bala landslide dam. 
Although the landslide dam already failed, unstable debris mass is probably remaining there clogging 
partly of the path of smaller amount of water impounded behind the debris mass (see Photo 2). Further 
investigations related to this issue are mandatory and the results will be reported by the authors in the 
near future. 
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