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VORONOI APPLIED ELEMENT METHOD FOR
STRUCTURAL ANALYSIS: THEORY AND
APPLICATION FOR LINEAR AND
NON-LINEAR MATERIALS

Kawin WORAKANCHANA' and Kimiro MEGURO?

ABSTRACT: Voronoi Applied Element Method (VAEM) has been developed based on
previous Applied Element Method (AEM). Comparing to the original AEM, the
advantage of VAEM can be described as the followings: the boundary of VAEM domain
can fit to any type of domain easily, pre-existing joint rather than in the horizontal and
vertical direction can be modeled, the model does not require numerical Poisson’s ratio,
element size can be changed and displacement solution is not depended on the element
size. The verification of the model from elastic to non-linear range was shown in the
paper. The proposed model shows good compatibility to theories and experimental
results.
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INTRODUCTION

Applied Element Method (AEM) is a numerical model for simulating the structural behavior from an
elastic range to a total collapse. In AEM, a structure is modeled as an assembly of rigid elements
connected together with a zero-length normal and shear spring as shown in Figure 1. The major
advantages of AEM are simple modeling and programming, and high accuracy of the results with
relatively short CPU time. By using AEM, highly non-linear behavior, i.e. crack initiation, crack
propagation, separation of the structural elements, rigid body motion of failed elements and totally
collapse behavior of the structure can be followed with high accuracy (Meguro and Tagel-Din, 1998).

After the first developing for reinforced concrete by Hatem", AEM has been used to simulate behavior
of many materials such as soil, mortar and steel (Ramancharla, 2001, Mayorca, 2002, Elkholy, 2003).
The model achieves high accuracy in simulating behavior of those materials. However, due to the
fact that the model contains only square shape element, it has several disadvantages. To eliminate
these disadvantages, the new developed AEM based on Voronoi shape has been proposed.

Each element shape is based on the Voronoi tessellation (Okabe et al., 1992). To represent the
physical domain with the Voronoi element, first, the element nodes are given in the space within the
domain. Then, we associate all locations in physical domain with the closest member(s) of the
element nodal set with respect to Euclidean distance. A region generated by a nodal point represents
a Voronoi element.

Using the Voronoi Applied Element Method (VAEM), the element nodes can be placed everywhere in
the physical domain with no constraint. Therefore, they can be placed to fit any domain shape
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without reducing the element size as compared to the original AEM. Moreover, element sizes can be
varied and concentrated in interesting areas of interest by varying density of element nodes which
reduces the number of elements. Also, the location of the element nodes can be placed to create a
weak plane representing pre-existing joint in any direction. In this paper, the formulation of the
VAEM was introduced. Last, VAEM was verified in the elastic range and the non-linear range for
reinforced concrete materials.

APPLIED ELEMENT METHOD (AEM)

Element Formulation

Considering two rigid bodies connected together with pairs of springs representing stresses and
deformations of a hatched area, normal and shear spring’s stiffness are defined respectively as shown
in the following:

=E><de and k,.=GXdXT
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Where, d is the distance between springs, T is the thickness of the element and a is the length of
representative area, E and G are the Young’s and shear modulus of the material.
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Figure 1. Element shape, Contact Point and Degree of Freedom

Figure 1 shows two AEM elements connected together with a pair of normal and shear springs.
Element degrees of freedom are located at the element centroid. The stiffhess matrix components
corresponding to each degree of freedom are determined by the direct stiffness method. The total
element stiffness matrix size is 6x6. Its upper left components are shown in the Equation 2.
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The global stiffness is obtained by standard method for assembling the stiffness of each spring together.
Then, the governing equation is

(Kl [Al=[F] &)

Failure Criteria
The principal stress concept is used in the original version of AEM. Principal stresses at each spring
location are calculated using Equation 4 as the followings:

2
(6, +7,) I _0'2) 2
o,= + +7 4
. 5 > @
where o; is the secondary stress calculated by
P P ) P 5)

a a

where o3 and &, is normal stress at points (B) and (C) as shown in Figure 2, respectively and x is the
distant between the calculated location of the principal stress and the perpendicular side. When o,
exceeds the critical value of tension resistance, the normal and shear springs are considered to be in
the failure state. Then, the forces in the normal and shear springs are redistributed in the next
increment by applying the normal and shear spring force in the reverse direction.

0.:‘\01

)(B

e

I

(C)

A—
b
b
b

g

Contact point

Figure 2. Principal Stress determination

VORONOI APPLIED ELEMENT METHOD (VAEM)

Element Formulation
Again, considering a two-particle subassemblage shown in Figure 4, each rigid particle has two
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translational and a rotational degree of freedom defined at particle centroid. Assuming small
rotations, motion at any points (x,) of a rigid body can be defined for element 1 and 2 as

Ur=Uer- Us(VVer)  Ua=Ueat U3 (X-Xer)
Ui=leq U (VVe2)  Us=Uest Ug (X-Xc2) ©)

L,

@

®

Figure 4. Two-particle assemblage and their degree of freedom (a) global coordinate (b) local
coordinate

where u;, u; and uz and u,, s and u, are translational displacements and rotation degrees of freedom of
element 1 and 2 in global coordinate, respectively. Subscript ¢ specifies the value at the particle
centroid. Point p on the boundary surface is separated and defined by p’ and p” after deforming
(Figure 5). The relative displacement vector of spring deformation in global coordinate at point p

can be defined as

) -
{‘6;?=p'p"={§"}={”‘ “‘} %)

Us —u
Substituting Equation 6 into 7 and rotating the displacement to the local coordinate paralleled to

element surface, we can obtain the relationship between spring deformation in local coordinate and
particle displacement in global coordinate as

{a}=[R1[B]{u} ®
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Figure 5. Two-particle assemblage after deformed

where {cS}T=[8.,,8.] in which &, and &, are normal and shear deformation of spring, respectively.

Rotational matrix [R] = [cosa —sina

, deformation-displacement relationship [B] =
sina cosa

-1 0 (-y) 10 -y,
0 -1 —(x-x,) 0 1 (x-x,)
preliminaries, the strain energy due to spring deformation on the boundary line S can be given as

} and {@}" = [u;, us, u3, us, us, ug]. Based on the above

w= %ﬂ“{& }'[DI{5,}dS ©)

where the constitutive relationship [D]=Diag[ky;,k.] in which k&, and k; is stiffness of normal and
shear spring number i’s, respectively. Applying eq. (8) into (9), we have:

1 .
W= {w}T[K] {u} (10)

n T

where [K] = Z [[B]T[D] [BKS is the stiffness matrix due to all springs on the boundary. ¢ and £+

=l

indicate the initial and last points of the boundary portion i, respectively (Figure 6). By applying
Castigliano’s theorem to Equation 5, stiffness Equation can be derived as

= ‘Z—V= [K]{u} an
u

Figure 6. Normal and shear spring at element boundary
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where {r} contains the generalized force components associated with each displacement vector {u}.

Equivalent continuum

Relationship between discrete constants k,; and k; and the elastic properties in this study follows the
equivalent continbum method (Morikawa et.al, 1985). The method employs the equivalence of
strain energy between discrete system and continuum and the advantage of close-pack circular discrete
element geometry. To apply with AEM, it was found in the formulation process that these
relationships are almost the same as the original proposed but times with square root 3. Therefore,
this relationship for AEM is defined as

Plane stress:
= E-t ,kﬂ - E'l'(12—3V) (12)
(l-v)-d (1-v*)-d

Plane strain:
k, = E-t k= E-t-(1-4v) (13)
a-2v)Q+v)-d % (1-2v)(1+v)-d

where E is elastic modulus, v= Poisson’s ratio, # = material thickness perpendicular to plane and d =
distance between two particles. It should be noted that the Poisson’s ratio is limited from -1 to 0.33
for plain stress and -1 to 0.25 for plain strain to prevent a negative value of tangential stiffness.

LOCATION OF ELEMENT NODES AND SPRINGS

In the original square AEM, the element node is placed at the center of the element and the springs are
distributed around the center of element side. Due to its square shape, the line connected between
two nodes passes through the centroid of distributed spring therefore no eccentric forces occur when
loading is applied. In contrary, VAEM does not possess this property.  If we put the element node at
the center of gravity and distribute the spring around the center of element’s side according to the
previous version, the sum of the distributed spring force on an element side will not pass through the
element node and create an unbalanced moment which affects the rotation at the material point, which
is not considered realistic in case of continuum material. The alternative is to put the element node at
the Voronoi nuclei and put the center of distributed spring at the middle point between these nodes
which is the element boundary according to Voronoi diagram property, thus all of the eccentric forces
are eliminated.

STRESS CALCULATION

In VAEM, stresses can be classified into two types; spring’s stress and stress at the element node.
Spring normal and shear stress can be calculated by dividing spring force in each spring by their areas.
Unlike the spring stresses, the stresses at the element node are calculated using all springs around the
element. This method was first proposed by Bolander®. To calculate stresses at any plane passing
through the element node, the internal forces on the plane required for equilibrating the force in the
half plane of element (Figure 7) are calculated (Equation 14). Then, stresses can be calculated by
dividing these forces with the area of that plane (Equation 15).

Fo= i R[F, cos(m -, +0)+F, cos(a, - 6)]
’ (14)
Eo =Y R[F, cos(z~a,~6) +F, cos(a, +6)]

i
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Figure 7. Force calculation at the element node

Then, stress can be calculated by

O=Fno/Ae
t=F /s (15)

It is noted that we can calculate &, 0;, and 7, using
O =F,ods whené=0°
G,,= Fusldo whep8=90°
Ty = Fieds whené=0° (16)
VERIFICATION FOR ELASTIC BEHAVIOR

In this section the behavior of VAEM in elastic range was verified by analyzing an elastic square box,
cantilever beam, deep beam and circular disk.
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Figure 8. VAEM geometry and loading and VAEM after deformation

Elastic Analysis of Square Box under the Uniform Compressive Force

A box of width 1.9, height 1.9 and thickness 1 units is fixed at the bottom and left side (Figure 8). It
is loaded from top by displacement control. Young’s modulus was varied from 1000 to 3000 and
Poisson’s ratio was varied from 0.0 to 0.3.
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General VAEM mesh — Effect of element arrangement

Several VAEM meshes were tested to investigate the parameters affecting the elastic behavior. The
first example shows the behavior of square box under the uniform compressive force in plain stress
case (Figure 8). Mesh M1, M2 and M3 were generated by controlling the distance between each
element (Figures 9(a) to 9(c)). Mesh 4 is randomly created without any constraint (Figure 9(d)).
From Figure 10, all meshes except for M4 have slightly effect on the elastic Poisson’s ratio. The
result of varying E in Figure 11 at v= 0 shows good agreement between theoretical and numerical
value.

Cantilever beam

The cantilever beam with a cross-section of 1x1 m® and 10 m span is subjected to a point load at the
free end (Figure 12). Young’s modulus is 2.14x10’ kN/m? and Poisson’s ratio is 0. The
displacement obtained from VAEM and original AEM are shown in the Table 1. It was found that,
both square shaped and Voronoi shaped AEM results match well with the theoretical result.

Deep beam

In this section, the elastic problem of deep beam has been solved and compared with the finite element
result (Figure 13). A deep beam with a dimension of 2x2 units are loaded at the top with the
horizontal load of 5x10% units. The comparison of top displacements is shown in the Table 2. As
shown in Figure 14, the stress distribution also matches well with one from FEM. The displacement
from VAEM was also compared with the original AEM as shown in Table 2. It was shown that the
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original AEM show less deformation compared to the VAEM but still both methods give good
agreement with the theoretical value.
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Table 1. Comparison results of vertical displacement at the cantilever beam tip from

VAEM, AEM and exact solution

Exact (PL/3EI) AEM  VAEM
J(m) 9.20 9.12 9.22
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Figure 12. Geometry of cantilever beam

Table 2. Comparison of horizontal displacement in deep beam between VAEM, AEM and FEM

AEM VAEM FEM

S 1.35 1.44 1.46
Difference 1.57%
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_ FEM-undeformed mesh

Figure 13. Comparison of o, in deep beam

Figure 14. Comparison of stress in deep beam

Circular disk

This example shows the elastic analysis of a circular domain. This type of domain requires a large
number of elements in the original AEM to obtain the accurate result due to its single size
square-shaped element. Figure 15 shows the VAEM mesh of circular disk of 8 unit diameter
subjected to two point loads from the top and bottom of the disk. In this problem, the Young’s
modulus is 2.14x10” units.  The stress distribution at the center line was compared with the theory of
elasticity and a good agreement result is observed.
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Figure 15. Circular disk with vertical applied load

The plot of o;, is shown in Figure 16(a) to 16(e) and o, is in Figure 16 (g). From Figure 16 (a),
16(c), 16 () and the plot in Figure 17, it can be seen that stress distribution from VAEM are similar
regardless of element size. Moreover, o, from Figure 16(e) and 16(g) and the plot in Figure 17
indicates that the elastic behavior of VAEM is the same regardless of direction. The plot in Figure
17 indicates that stress distribution obtained from VAEM is very close to the exact solution regardless
of element size. Stress from the original AEM (solid line with triangular mark) gives a similar result
when compare to the exact solution however the difference comes from that fact that there is a
difference between the actual and AEM physical domain sizes.

VAEM FOR FRACTURE ANALYSIS OF CONCRETE MATERIAL

The verification of VAEM in simulating plain and reinforced concrete was conducted. The original
AEM has capability of tracking the crack distribution without prior knowing the location of the crack.
However, the crack distribution is limited to only in the vertical and horizontal direction according to
the element shape. With the VAEM, cracks have more freedom to propagate therefore the crack
propagation can better follow the real crack path.

CONCRETE MODELING

In this model, the behavior of the material is initially elastic, i.e., 0=E¢, where E is the apparent
concrete Young’s modulus. Inelastic behavior is formulated based on similar concept of stress-strain
boundary introduced by Cusatis et al. (2003). Elastic behavior is limited by three boundaries, which
are tension-shear, compression-shear and compression as shown in Figure 18. This concept is based
on the normal and shear stress in the springs rather than the tensorial measure of stress which can be
biased based on the mesh configuration. Schlangen (1995) used a criteria based on stress measures
computed at the nodes of a beam lattice, rather than in the beams themselves. Moreover, Meguro and
Hatem (1998) employed the principal stresses concept similar to the use of tensorial measure by
Schlangen however principal stresses is calculated at the springs themselves instead of element nodes.
Employing one of the two methods is expected to reduce the mesh bias on the fracture criteria. The
study will be conducted in the near future. If the force reaches tension-shear boundary, the crack is
occurred and the stiffness of the spring is assumed as 0.01 of the initial stiffness and all of the forces in
normal and shear springs are redistributed. If the force reaches the compression shear and
compression boundary, the stiffness of the spring is also assumed as 0.01 of the initial stiffness
however no force is redistributed.
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Figure 16. Comparison of stress distribution form VAEM and AEM
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Figure 17. Stress comparison of AEM, VAEM and exact solution
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Figure 18. DEN test set up
PURE CONCRETE MODELING

In this section, the fracture behavior of plain concrete structure was simulated using VAEM. The crack
propagation was compared with the experimental result.
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Figure 19. DEN test set up

Double-Edge-Notch Specimen (DEN)
VAEM and original AEM were used to simulate the test of DEN specimens by Noory-Mohamed et al.
(1993). Six specimens with dimension of 200x200 mm were subjected to 2 types of load-paths
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(Figure 19(a)). The first is axial tension at a constant shear force. In this case, a compressive shear
load P; was applied to the specimen in displacement control until P; = -5 kN, -10 kN and to the
maximum shear load that the specimen could sustain. Then the axial tension P was applied (Figure
19(b)). The second load-path is called ‘proportional loading’ (Figure 19(c)), i.e., an axial tensile and
a lateral compressive shear load were applied to the specimen such that the ratio of axial deforamtion
(6) to lateral deformation (J;) remained constant throughout the test. Figures 21 and 22 show the
comparison between simulation and test results. From the observation, the crack propagation
between experimental and simulation in each case are in good agreement.

REINFORCED CONCRETE MODELING

In this section, VAEM was used to simulate the reinforced concrete behavior in the monotonic static
loading condition. The numerical results are compared with the experiment results in the following
sections.

Reinforcement model

The reinforcement was modeled by adding in normal and shear springs as shown in Figure 20. In
this study, perfectly plastic model was used for reforcing bars to represent yielding as also shown in
Figure 20.

Steel spring

£, compression g tension

Figure 20. Steel springs and their material properties

Size effect analysis

A simulation of two beams out of totally six beams from experiment was performed. The original
test was carried out by Iguro et al. (1985). These beams were not provided with shear reinforcement.
The material properties for beam b-1 and b-5 were shown in Table 3. Beam b-1 and b-5 are selected
for the simulation. The beam dimensions, reinforcement as well as load-deformation behavior are
shown in Figures 23 and 24. A loading is uniformly applied with water pressure system. The main
reinforcement ratio “pr” in the vicinity of the supporting, where shear failure would occur, was 0.4%
and it was 0.8% in the middle of the beam for (b-1) but only 0.4% for the (b-5) case.

Table 3. Material propetties of the beams

Concrete Steel
Specimen Oy o prl pr2 Diameter  Yield stress
number (MPa) (MPa) (mm) (MPa)
(b-1) 20.2 1.8 0.4% 0.8% D3 313.8
D6 431.3
(b-5) 27.9 2.7 0.4% 0.8% D16 362.8
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Meshes of 1229 and 1449 elements were used in the model for beams (b-1) and (b-2), respectively.
Loading was applied using load control condition. The comparison of the force-displacement
relationship for beam (b-1) and (b-2) was shown in Figures 23 and 24, respectively. It can be seen
that the force-deformation relationship obtained from VAEM is close to the experimental results and
numerical results from AEM and FEM. However, VAEM exhibits less maximum strength compared
to AEM because the diagonal crack in VAEM was represented by a shorter crack length (less zigzag)
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which consumes less energy for generating. From Figures 25 to 27, it was observed that the crack
pattern from VAEM was closer to the actual crack pattern than AEM.

2
Expm iment
L6 - A== N
g K AEM
2, 1.2 \

vagm FEM

Water pressure |

Stress (K
o
O
i

DA m

04 : i
0 0.005 0.01 0.015 0.02

Displacement (m)

Figure 23. Comparison of stress-displacement relation for beam (b-1)

LARGE DEFORMATION ANALYSIS

To simulate the structural behavior under large deformation, the geometrical change has to be
considered during each step of the calculation. This requires the following additional procedures:

AEM - FEM

xperiment

VAEM

Waier pressure

0 002 004 006 008 01 012 014 016
Displacement (m)
Figure 24. Comparison of stress-displacement relation for beam (b-5)
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Specimen No. 6 d = 200 cm Opax = 25 m2
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Figure 27. Crack pattern by original AEM
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solution

—137—



1) Update the location of the element node according to previously calculated incremental
displacement
2) Calculate the geometrical residuals as

{Re}={f}-{Fun} an

This is to account for the incompatibility between the external applied forces vector, {f} and
internal forces, {F,,} due to modification of geometry of the structure.
3) Take into account the geometrical residual in the stiffness Equation which can be written as:

[KI{u} = {r}+{Rq} (18)

The verification of this method was shown in the following paragraphs. The geometry of the beam
subjected to a compressive load was shown in Figure 29. Young modulus of the beam is equal to
8.4x10°. The result obtained from the numerical model was compared with the analytical solution
(Timoshenko, S.P. and Gere, J.M., 1961). The results from numerical model predict very closely the
theoretical buckling load and force-displacement relationship of the post buckling behavior.

CONCLUSIONS

The VAEM has been developed based on the original AEM. Elastic behavior of VAEM was verified
in this section. Comparing to the original AEM, the advantages of VAEM can be described as the
followings:

- The model boundary can easier fit any type of domain.

- Pre-existing joint rather than in the horizontal and vertical direction can be modeled.

- The model does not require numerical Poisson’s ratio (however Poisson’s ratio is limited from -1 to
0.33 in plain stress and -1 to 0.25 in plain strain).

- Itis possible to vary element size

- Displacement solution does not depend on the element size

Figure 30. Beam under large deformation

The VAEM was verified for predicting the behavior of plain and reinforced concrete. In all cases, the
obtained crack locations agreed well with the experimental results. In case of RC simulation, the crack
patterns obtained from VAEM were found to be more accurate than original AEM. Because VAEM
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can develop the diagonal better than AEM, VAEM exhibits less maximum resistant compared to AEM.
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