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MODELING OF LARGE DEFORMATIONS OF
SATURATED SOILS DURING
FAULT SURFACE RUPTURES

J6rgen JOHANSSON! and Kazuo KONAGAI*

Abstract: A two phase formulation is implemented into the material point method with the pur-
pose of modeling large deformations of saturated soils during surface fault ruptures. Numerical
simulations of fault surface rupture model experiments show the abilities of the developed numeri-
cal tool. Problems related to incompressibility constraints are discussed and circumvented for pure
seepage problems whereas for solid-fluid deformations there is a need for further improvement of
the tool. :

Key Words: Large deformation, saturated soil, fault surface rupture experiment, incompressibil-
ity.

INTRODUCTION

The 1999 earthquakes in Taiwan and Turkey has shown how great a risk fault surface ruptures are to
human lives, buildings and infrastructure. Even though fault surface rupturing is not a new problem,
there are very few building codes in the world containing any type provisions for reducing the risks.
This may be due to the infrequent occurrence of fault surface ruptures, the great difficulty in preventing
damage to infrastructure and buildings affected by the ruptures and also the difficult task of estimating
possible deformations due to many unknown factors such as possible location; geometry and motion of
the fault; and mechanical properties of the soil deposit.

In California, United States; New Zealand; and also in Taiwan, after the 1999 earthquake, so called
fault zoning acts have been established. A fault zoning act prevents construction within a certain distance
of the known fault line and may be one way of reducing the risks for new buildings and infrastructure,
but for structure already built along a fault line other remedial measures are needed, further more the
fault zoning act does not say anything about the possible extent of deformations and/or what are the
probability of occurrence of these deformations.

In highly populated countries such as Japan and other east and south-east Asian countries it is difficult
to impose a fault-zoning act due to the lack of space. In these countries building code provisions based
on engineering principles are needed as to allow for construction along fault-lines if certain design re-
quirements are met. Such building code provisions would also be attractive for less populated countries,
such as United States and New Zealand, as well, since it may allow for more economical construction.

Another issue is the difference between strike-slip and dip-slip faults. The deformations along a
strike-slip seem to be concentrated in a narrower zone along the fault line whereas the deformations
along a dip-slip fault may affect areas further away from the fauit line (Mukoyama, 2000). In Japan
there are some 90 dip-slip fault systems with several faults in each system and with a lot of buildings and
infrastructure along them.
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To provide results in the form of possible extent and probabilities of deformation along these fault
lines, much research is needed. Specifically numerical tools are needed to estimate possible deformations
induced in structures in and on top of soil deposit affected by fault surface rupture. Within here is
described a numerical tool that allow for the numerical simulations of large deformations related to fault
surface ruptures. Numerical results are compared with results of some recently performed experiments.

NUMERICAL TOOL

The developed numerical tool is based on the Material Point Method first described in (Sulsky et al.,
1994). It is a fairly new method for solving problems in solid mechanics (Sulsky et al., 1995) and is an
extension of a hydrodynamics code called FLIP (Burgess et al., 1992) which, in turn, evolved from the
Particle-in-Cell Method for fluid flow(Harlow, 1964).

Solid-fluid interaction formulation

A coupled solid fluid (u-w) scheme described by (Chan et al., 1991) is adopted and adjusted for imple-
mentation in the Material Point Method. It is assumed that the soil deposit is fully saturated, Darcy’s
law is valid, solid grains are incompressible, and thermal changes are negligible. Further assumptions are
given below along with the derivation. The governing equations are given for a Lagrangian frame moving
with the solid-fluid mixture in terms of solid-fluid mixture momentum equilibrium (see e.g. Zienkiewicz
et al. (1990); Lewis and Schrefler (1998) or chapter 2 in Zienkiewicz et al. (1999)) ,

Gij.j — Pmbi —Ps (Wi+WjWi,j)+Pmbf=0, Q)
fluid equilibrium,
—p.i — [ki) ™" v — p s — E’f (Wx + ijitj) +psrbi =0, 2
and mass conservation, )
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For a description and sign convention of the variables in above formulas are see Table 1 . Equation (2)
is further simplified by assuming isotropic permeability k; = k and neglecting the underlined convective
terms to obtain the two governing equations

Gij.j — Pmlli — PfWi + Pmbi =0, @
—pi— 2= priii=PLiii+psb =0 )
where the total stresses, 0;;, are obtained from the effective stresses and pore water pressure
cij = 6;;—&;jp ©)
and the effective stresses
&= £ (Sl i) @

are explicitly obtained from an appropriate constitutive law e.g. hypo-plasticity (Kolymbas, 19), which
is used in the numerical examples below. For the explicit scheme derived below Equation (3) is used for
updating the excessive pore pressure by multiplying with the time increment, A, to obtain

K ,
Ap=Atp = —Az7f (i + 1) 8)

On the other hand if an implicit scheme is desired, Equation (3) should be integrated in time to obtain
a direct expression for the pore water pressure and inserted in to Equation (5) and it may be easier to use
the absolute displacement of water instead of the relative displacements as here (see further chapter 3 in
Zienkiewicz et al. (1999)).



Table 1: Variable description.

[ Variable - | Description | Remark |

O;j Total Stress Compression negative
u; Solid matrix displacements

pm = (1 —n)ps+nps | Solid-Fluid Mixture density
Pr Fluid density
Ps ‘| Solid density
n Porosity
wi Water displacement

relative to solid matrix
b; Body force on solid-fluid mixture e.g. gravity
p Pore pressure Compression positive
by = pﬁ;ﬁfg Permeability Unit: [L37~1M71]

[ Hydraulic Conductivity Unit: [LT7!]
g gravity
€ Volumetric strain of solid-fluid mixture
Ky Fluid bulk modulus

Finite element discretization

The governing equations and boundary conditions are first for clarity discretized spatially with finite
elements to establish the equation system and then the material point concept is introduce in the following
section. The mixture and fluid displacements take the following forms:

u,-(x,-,t) = U (t)NIu(xi)7 Wi(xht) :wl(t)NIW(xi)’ 1= 1a"'7Nn (9)

Where the N's are finite element shape functions. Upper case letters represent nodal numbers, lower case
letters are refers to Cartesian coordinate and summation convention is applied. Lower case letters m, c,
and £ are applied to mixture, coupling and fluid terms. (The notation is somewhat relaxed to reduce space
and time of the derivation, hopefully the concept and procedures will be clear to the any reader anyway).
Multiplying Equation (4) and Equation (5) by the interpolation function N{ and N}, respectively as
weighting functions and integrate over the domain the following two equations are obtained.

/QNIM (6j.j — Pmili — PfWi + Pmbi) dQ =0, (10)

Wi y .
/QN1W (—P,i—f—Pfui—ErliWi-l—bei) dQ=0 an
Integrating first term of the Equation (10) by parts gives
\/QNIuGij’de = /SNIMH,'G,'de— /QNIM,jGide' = m'\;,-’tmaions - ,i,:';i (12)

where for' """ and fi".are external traction forces and internal forces respectively. The second term

. in Equation (10) gives the mixture mass matrix
- /QN}'PmiiidQ =- _/QN}‘PmN}‘iniJi = —Muiyiiy;, (13)
the third term becomes the mixture-fluid coupling mass matrix

—/N,"pfw,-dQ:—/N,"pr}Vdej,-z— JIWJi (14)
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and the final term gives the body-forces applied to the solid-fluid mixture

/ NYpmbidQ = fhodvforces (15)

Now turning to the second governing Equation (11) the first term becomes
- /QNIWP,idQ == /SNIW nipdS+ LNWQ TP+ £ (16)

which is the externally applied pressure on the fluid and internal forces due to the pore pressure. The
second term becomes

Wi 1 . .
—/QNIWIIdQ: —/QNIWZN}VdQWﬁZ —CfIJWj,' (17)
where Cyyy is the fluid damping matrix. The third term becomes
——/Qlepfiiid.Q = _/Qlepr}ldQﬁji = —M_yiiy; (18)

where M j; = MCT, ; is the fluid-mixture coupling mass matrix which is transpose of the mixture-fluid
coupling mass matrix. From the fourth term the fluid mass matrix is given as

/ “’pfwdQ-— /N;”prdew,, = My (19)
and finally the last term gives the body forces applied on the fluid
/QNIWbeidQ f}:]oldv orces (20)

The above terms from Equations (10)and (11) is assembled into the equation system

[Mmu MCIJ]{ﬁji}+[Cm 0 ]{ﬂji}+[ '11:11;1 0. ]
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x1 tractions odyforces
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fexr , pressure + ody forces
fIi fi
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where C,, is an artificial damping matrix applied to the solid-fluid mixture.

Material point discretization and a simple modification
Here follows the derivation of the material point version of (21). In the original material point method
a material density is represented discretely by material points with a constant mass according to a Dirac

delta function as
N,

p(xi,t) = Y mpd(xi — X, (1)) 22)
p=1
since the material points are following the Lagrangian frame. If we use a Lagrangian frame for repre-
senting the solid part of the porous material its density can be written as:

N,

ps (xi,1) = ): gy (xi — X, (1)) 23)

p=1

The pore fluid (water) percolates with the velocity w; relative to the solid’s Lagrangian frame. One
way to deal with this would be to introduce completely Lagrangian-fluid material points. But this woutd



require more exchange of information since e.g. the fluid pressure at the fluid points would have to be
interpolated to the solid points to compute the effective stresses which is-used in relevant constitutive
laws. Under the assumption that the fluid percolation velocity relative to the solid is small we can keep
the location fluid points and solid points in the same Lagrangian point through-out the calculation there
is no need for the extra information exchange and thus a relative decrease in computation time and less
tedious coding are realized. To allow for this simplification we need to account for the fluid percolation
relative to the solid by correspondingly changing the fluid point masses according to the divergence of
the relative velocity

Amfp = —Atpfvmpw,-,,- (24)

where the fluid density p; is assumed to be constant even though the water is slightly compressible. The
total mass of a solid-fluid mixture material point is now represented by a sum of the constant solid mass
and the variable fluid mass

Myp = Mgp+ Mgy (25)
and the solid-fluid mixture density is
N,
Pm (xi,t) = Z (msp+mfp)8(xi_xp(t))' (26)
p=1

The volume of a material point representing the solid-fluid mixture becomes
Msp +Mysp
Pm

which has to be updated according to the volumetric change of the mixture, &;.
Applying the concept of discrete density to the individual terms in (21) and invoking

Vinp = @7

Ny

/ dQ=Y Vnp (28)
Q =1

where N,, is the number of material points within Q, we derive the material point formulation as follows.
The solid-fluid mixture mass matrix becomes

N,,
My = /Q NipuNIdQ = Y NY (mep+mp,) N, (29)
p=1

the coupling solid-fluid mass matrices, with p ;Vp = my, /n become

N, N,
M.y, = /Q NipNYdQ = ZN, P ViupNY = ZN, f”N, =M, (30)
= .
and the fluid mass matrix becomes
Mfu—/prwadQ ZN"prm,,N, = ):N, f"N, 31)

The solid-fluid mixture artificial damping matrix, C,,, remains the same as in the FE discretization, but
the fluid damping matrix, Cyyy, changes to

N,

1
Cf,,_/zv, N = ):N, Vo) = Z Wpfg

m
np ZNF’ STlny. G



The internal forces of the solid-fluid mixture and the fluid now become, respectively

Ny
£ / N6,7d0 = ZN,] i 33)
and
N,
}7; /N,,pd.Q Zle mpP- (34)
=

Here the volume of the solid-fluid mixture material point is invoked again since the governing Equation
(5) is derived with respect to the total volume of the solid-fluid mixture. Then all terms on the left hand
side in Equation system (21) have been changed to material point equivalent terms. On the right hand
side the solid-fluid mixture external traction, fy;" ™", and the fluid external pressure, ff;; 7",

remains the same as in the FE discretization. The body force terms of the solid-fluid mlxture and the
fluid becomes, respectively

N,

::Zdy e / NfpmbidQ = Z N} (msp+myp) bpi : (35)
N,
fﬁ;’id.v orces _ /QNIWbeidQ Z Nw fpb (36)

where b,; is the body force acting on the solid-fluid mixture matenal point.

Time discretization

To keep the current simple explicit scheme it is desirable to solve the Equations system (21) by diago-
nalizing/lumping the mass and damping matrices and using staggered central differences. The lumping
results in block diagonal system

koo koo ; k
i 4005 27 5
M, My Wk, 0 Cp Wh; 0 - }"15

xt tractions odyforces k

— mii + mii (37)

- xt , pressure fbvdyforces
fIl + fli

where the diagonal consists of 2 by 2 matrices which has to be solved for each degree of freedom at

discrete times, #%. I is the node number, i is the Cartesian direction and the k on the matrices means that

they are computed for each time step. Approximating the mixture accelerations and velocities with

1 -
ik, = = (uk+1/2 “fi 1/2) - (38)
respectively
|
uﬁ_: 2( k+1/2+ k= 1/2), 39)

and likewise the fluid accelerations and velocities, the lumped system (37) is rewritten for each degree
of freedom

1 k+1/2 I /2 gk 1 ..k 172 G172
— Mt =FEk4 — My P -2 40
At 2C 1 2C 40

where the M; and G; represents the terms collected from the corresponding matrices, Fy; contains the
collected internal, external and body-forces, iy; is the velocities vector

ﬁ,,-:{ t } @1)



and At is the time step. Multiplying Equation (40) with the time step and collecting the terms on the left
hand side we obtain

. Ar -
<M1+ > c,> TARTCIYNY L Ny ‘/2—7c e 42)

from which #;; can be solved for

-1
i = (M + 2c1> (AtFI,+Mf§‘,’ 2 C i ‘/2). 43)

The new velocities are used to update the position of the solid-fluid mixture material points, computation
of the strain rates for the stress updates, and fluid divergence for updating the mass of the fluid material
points. See the appendix for a derivation of explicit formulas for the solid and fluid velocities.

Initial conditions
To start the time stepping procedures it is assumed that the initial mixture and fluid velocities are zero,

i 0 =0, (44)

which implies
iyf* =~ /2. (45)

Putting Equation (45) into Equation (42) gives the velocities

. 2 _ At
ﬁ 1/ 2 —1 Fk =0 (46)
and the velocity increments
A o e
aig = S . @)
The inverse to the mass matrix is
-1
- 1 —
M= [ M M J _ [ My —My ] 48)
M Mf[ MmIMfl - o My
uIIi/Z _ At/2 . [Mfl ( m,;‘);_,tractions + m(])ld)forces fmr)
MmIMfI '_M (49)
M ( f;clr . pressure + fbody forces f}?ﬁ)]
w]li/Z _ At/2 5 [—Md ( m);l;,tractions + fbodvforces ’,:1;’) T
M, My —-M5 (50)

M,y ( f;al\‘tf, pressure | f;lozd)f orces | f}nli)] .

Boundary conditions
For the analysis of the numerical examples given below three different combinations of boundary condi-
tions have been used:

1. Both solid and fluid velocities are prescribed.

2. Solid velocities are prescribed and fluid velocities are unprescribed.



3. Both solid and fluid velocities are non-prescribed.

Combination 1 is used for the motion perpendicular to an impermeable boundary. The second combi-
nation is used for the motion parallel to a rough boundary were solid velocities are prescribed and the
fluid is free to move parallel along the wall or for motion perpendicular to a permeable wall. The third
type is used for the motion parallel to a slippery boundary. In the explicit scheme adopted here type 1
is implemented by computing the appropriate velocity increments and for type 3 nothing is done since
it really no constraints are applied to the velocities. Type 2 requires one to solve for forces acting on
the solid corresponding to the prescribed velocities from Equation (A4} and use these forces to compute
the fluid velocity increments with Equation (A7). Other possible boundary conditions would include
external nodal forces due to pressure on the fluid, point or linear loads on the solid-fluid mixture.

Critical time-step and stability
A discussion on the critical time step for 1-D explicit MPM is available in Wieckowski et al. (1999). In
general a smaller time-step then for a regular explicit FEM is required.

The stability of the Material Point Method is highly dependent on the order of updating stress strain.
The original procedure was modified by Sulsky et al. (1995) and a higher stability was achieved. Barden-
hagen (2002) suggested a different update which also improves stability. The main difference between
the two modifications is a slight difference in conservation of energy.

SEEPAGE PROBLEM

A simple 2-D plane strain seepage problem has been chosen to show the abilities and problems with the
method. It is shown that the specific way of computing strains and internal forces are very important to
obtain a reliable results. An elastic soil in gravitational equilibrium is contained in a box 2.5 by 1 meter
and is surrounded by impermeable vertical walls with a bottom that can allow fluid flow out of the box at
the left most 0.75 meters. The input data shown in Table2 are all the same for the 4 cases and the initial

Table 2: Input data for seepage problem.

Parameter Value
Solid Elastic Modulus | 1.0-10° Pa
Poisson ratio, v 0.3
Fluid Bulk Modulus 1.0-10% Pa
Fluid density 1000 kg/m?
Solid density 2650 kg/m?
Porosity 0.5
Hydraulic Conductivity | 1.0- 1072 m/s
gravity 9.82 N/kg

pressure are shown in 1 . The problem is solved with different ways of strain computations with and
without averaging the fluid pressure and its increment. The solid velocities are damped out with high
viscous mass proportional damping as to avoid any oscillations of the solid which would affect the fluid
flow. Cases with different amount of damping were computed to confirm that the neither directions nor
the magnitudes of the fluid velocities were affected by the damping value. Figure 2 shows fluid velocities
and pressures results from 4 different cases which are described below (see also Table 3).

Case 1: The strains are computed with usual derivative of the bilinear interpolation. As seen in
Figure 2 (a) and (b) the fluid pressure is unstable and show a typical checker boarding due to the so
called Babuska-Brezzi instability (see further(Hughes, 1983) or (Bathe, 1996)).



Case2: To circumvent the Babuska-Brezzi instability the B-bar method (Hughes, 1983) of computing
strains and internal forces where adopted. As a special case of the B-bar method the mean dilatation
method (Nagtegaal et al., 1974) is used here. The result was improved slightly but still a the checker
boarding is observed.

Case 3: Hughes (Hughes, 1983) also discusses the need for smoothing the pressure and its incre-
ments. The strains and internal forces are compute as for Case 1 but the pressure and its increment is
averaged for each element. Now the fluid velocity show a more physical pattern and the pressure distribu-
tion is smooth and goes toward zero along the left boundary which is natural for a material in free flow.
One can imagine a small stone falling through air (neglecting the air resistance) it will be completely
stress free.

Case 4: In this case the B-bar method from case 2 was combined with an averaging of the fluid
pressure and as seen the result is equal to the ones of case 3 showing the importance of smoothing the
pressures.

FAULT SURFACE RUPTURE EXPERIMENTS

To obtain experimental results in order to verify the numerical model and to study in detail the effects
on the deformation buildup due to a dip-slip fault when pore water is present in a soil a new model
experiment has been designed.

Experiment setup and preparation

A box measuring 1.2 by 1.2 meters in plan and 60 cm deep was constructed (see Figure 3) . A 40 cm
diameter piston in the middle of the box, which is attached to a hydraulic actuator, is used to lift/push
up the soil to create the fault surface rupture. Toyoura sand with a mean diameter, Dso, of 0.2 mm was
pluviated into the box to assure repeatability and homogeneity. To be able to see the induced deformation
the sand deposit was inter-layered with thin (3-5 mm) horizontal layers of colored toyoura sand every 5
cm (see Figure 4). The sand density was 1580 kg/m3corresponding to a void ratio, ¢, of 0.68.

Experiment results

After the experiment the dry sand was first saturated and immediately drained and the saturated sand
was drained . The moist sand could then be easily cut along a vertical planes as to study the built up
deformations. Two cuts from a dry and a saturated case are shown in Figure 4. The soil deformation has
localized into narrow shear-band and offset the dark horizontal lines. The shear-band or rupture planes
are also readily seen as brighter lines crossing through darker less deformed zones.

0‘%%25

Figure 1: Initial pressure [Pa] due to gravity in seepage example
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Figure 3: View inside the experiment box

It is interesting that in the saturated case soil far away from the fault is deformed. The horizontal
solid lines added as guides to the eye to see the upward bending of the soil when approaching the fault. It
seems that the negative pore water pressure (according to measurement performed during the experiment,
but not shown here) increases the failure strength of the soil, which then behaves elastically for a larger
deformation than in the case of the dry sand. Also the surface deformation shows a different character as
seen in Figure 4

FAULT SURFACE RUPTURE SIMULATIONS

A hypo-plastic model (Herle and Gudehus, 1999) which is capable of modeling many of important char-
acteristics of the soil is employed to describe the behavior of dense toyoura sand used in the experiment
(see 4 for a simple description of input parameters and values. A detailed description is given in the
reference above). Figure 5 shows the maximum shear strain after a total uplift of 10 cm in 40 cm deep
and 60 cm wide soil deposit for a dry soil.

For the saturated case the results suffers from checker board effects of the pressure instability men-
tioned in the previous section as seen in Figure 6, which shows the maximum shear strains and fluid
velocities at a 2 cm uplift of the base rock. The fluid velocities flow downwards and towards the dilating
soil within the shear band.

An extension to circumvent the incompressibility related problems by using element strain increment
averaging in combination with viscous or elastic hourglass control (Flanagan and Belytschko, 1981)
is currently under investigation. Possibly a more recent extension of the hour-glass control could be
implemented (Kiissner and Reddy, 2001).

Table 3: Cases

(Case Normal Strain | B-bar | Averaging of fluid pressures
1 X
2 X
3 X X
4 X X




(a) Dry sand (b) Wet sand

Figure 4: Dry and Saturated Fault Experiment

CONCLUSIONS

Even though some numerical difficulties related to incompressibility remains to be solved the simple nu-
merical scheme shows great promise for modeling large deformations of saturated soil deposits. Several
different ways of computing strains were tried out for the seepage problem whereas for the saturated case
only the b-bar method is presented here. Element strain increment averaging has also been tried out but
hour-glassing deformations are quite large so some type of hour-glass control is necessary. Currently a
way of circumventing the incompressibility problem for the solid part is under development and will be
presented in a future publication.



Table 4: Hypo-plastic and fluid parameters.

[ Parameter | Value |  Unit | Description
(8 30.0 [?] Critical state friction angle
hy 2600.0e6 | [Pa=N/m?] Stiffness parameter
n 0.27 [ Stiffness
€40 0.61 ] Minimum void ratio in stress free condition
€ 0.98 [1] Critical state void ratio in stress free condition
€0 1.1 [1] Maximum void ratio in stress free condition
o 0.18 [1] fitting parameter
B 1.1 [1] fitting parameter
[ emiian | 065 | [1] | Initial void ratio (measured in experiment) |
Egnail 100 Pa Very small confining pressure
stiffness (for numerical stability)
| Ky | 1.0- 108 | Pa Fluid bulk modulus |
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Figure 5: Maximum shear strains for dry case. Observe the logarithmic strain scale, 1=100% strain.
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APPENDIX EXPLICIT EXPRESSIONS FOR SOLID AND FLUID VELOCITIES

A somewhat lengthy derivation of explicit formulas for the solid and fluid velocities follows below.
The terms in the first parenthesis in Equation (43) can be further simplified to

AT [ MytACy Ma -
M+ —C _ m A “m, c —
< T2 1> [ My My +5Cp

1 { Mf1+%Cf1 —M ] (AD)

B (Mml + %le) (Mfl -+ %Cfl) -*Mf, Ml M+ %le

Calling the fraction in Equation (A1) @, the explicit form of velocities which are suitable for direct
implementation in a computer code becomes

At 1i ] i
11 =0 (b + ) o (i i — )

At - -
<Mml - E’le> 1/1(,' 12 +MCIW§,' 1/2} -

(A2)
QMCI [A[ (f;,lr;:pressure_*_fjlf;)idy 0rces+f}y;§> +
K+1/2 At k=172
Mgty & (Mfl_ 7Cf1> Wy / }
and
Wl](j—l/Z __ QMcl {Al‘( m);ri.rracrions +f;i;),dv orces ,ZIII{) +
At k=172 k=172
<Mm1*”2—cm1> Uy / +Mc1W1,' / +
(A3)

Ar fore :
Q <Mm1 + Ecml) [At <f;,[r;,prt‘&mr€ + f;[()id"fo «“ + f}”l}i) +

Lk At k—1/2
Mc]ul;H/z—}- (Mf] - —2'Cf1> WII‘I» Y :1 .



Collecting terms related to the mixture velocity, #y;, and related to fluid velocity, wy;, respectively, Equa-
tions (A2) and (A3) becomes

At
00 S - S) )

At tions .
QAt (Mfl'f'i'cfl) ( mxl'ri,trauwm + m(l);iyforces ff,f'},)

— QM A ( fﬁ: pressure | odvfurces n f}'}i) (A4)
Q((Mfl-i-%Cﬂ)Md My (Mﬂ——_cﬂ>> k=172
k+l/2 =0 < (Mml - %ECW) + (Mm1+ le) ) ”f, 1/2+
- oM, At( m);tiﬁrracrions i fbodvforces f’"')
o (Mml + %sz) (At ( L PIESSUTE f;’fldyforces N f}'}ﬁ) ) N (AS)
Q (—Mndz + <Mm1 + %cm,> (Mf, - —cf,>> 172
To update the velocities of the material points the nodal acceleration or velocity increments,
iy = avitly = (i 77 6
and the fluid velocity increments
sowh= ()
are necessary. Putting Equations (A4) and (AS5) into Equations (A6) and (A7), respectively give the
increments
— OM At ( f;;rlr pressure | f;)ld) forces f},}i) (A8)
Q <<Mﬂ + %{Cf1> Mey —Mep <Mf1 - —Cf,)> yeo1/
and
AV =Q <—Mc1 <Mm, - —Az—tc,m) + (M - le> ) iy,
— OM At ( m);Ti,tracrions " m(],ldv forces ,’:},) +
(A9)

At ) .
g (Mml + ?Cm1> (At (f;;l(,presmre +f;10,d)fones +f}'}:)> +

At At 1 _
Q( M1+ (Mm1+—2—cm1> (Mf] 7Cf1> - —Q—) Wﬁ- 12



Expanding Q inside the parenthesizes gives

. At At
Aufi =Q [(Mfl + ) Cfl) ( ml — ) le) "‘ML2-1+
At At
- ((Mm1+-2—cm1) (Mf1+ —2—Cf1) —Mz,)] ufl l/Z-I-
At ; .
QA[ <Mf[+?Cf1> ( ":;ri,rracnons_i_ m(]);lyforces - ,Z,Ifl) +

— OM_ At (f;,l\*l(,pressure_l_ f;)ldvforces+ }%) +

At
Q((MfI‘FE‘CfI) My —My (Mf1—~2-Cf1>> i1/
K Ar k—1/2
AW],‘ =Q + | Mo+ 5 —Cor 141, +

Xt tracnons odyforces int
— OM A (f;1 mli - mli) +

At .
Q(Mml+7Cm]> (At( ﬂ;,pressure_[_ fIDidnyrces"i_f}Ti)) +

Ar At
Q [_MZI + (Mml + —2“le> (Mfl - ?Cf[) +
At At k-
() () )

Canceling terms of opposite signs the following two equations are obtained:

and

k—1/2

At
Auh =0 <Mf1 + — 5 Cf1) (- Atle)u -+

QAs <M 1+ %t-cﬂ) ( m,xl'ti,tracrions + mll)ldv orces ’Z,I,l) +
— QM At ( fopprese . phabfors o pn) |
QAM Cyifly 2
Ay =OMArCopiily -+
— QM At( extractions | cbodyforces _ ’Z,I,i) N
0 (Mm1+92—tcm,) ( ( f;}‘,’ pressure 1 odyforces n f}’}?)) +

At
Q (Mml -+ —2—Cm1> (—AthI) Wll(t 1/2

Collecting terms we finally get

(Al10)

(All)

(Al12)

(Al13)



At _ -
Alfl’l‘i =QAt [— (Mf] + ——2—Cf1> CmIL'l;(i 12 +MdCf1W§,- 172 +

At ; ;
(Mf] + E—Cﬂ) ( mli,rractwns + m(l);iyforces _ 11771;’) + (A14)

— M, ( f;}rlr pressure | floidyforces + f},;:):l
-k k—1/2 At L k=1)2
Avy; =QAs MchmIMI,' — | My + ?Cnd Cﬂw],- +
_ cl( m);ri,rracrions+ mtl)lt_z'yforces_ }1:'1,1) + (A15)

At .
(Mml"‘?le) (f;ﬁmressure_l_ f;)id}’forces_i_f},z_)] )
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