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Abstract

To simplify the non-linear dynamic design procedure on steel moment-resisting frames to seismic actions,
a new design-friendly reduced analysis method is proposéd: Global safety domain against plastic collapse
of an elastic-plastic frame becomes a convex polyhedron, and its whole figure is approximated also by a
hyper-ellipsoidal yield surface from a few reference points on the surface. Normality rule of plastic
velocity on the surface and elasticity inside the hyper-ellipsoid are assumed to trace the global restoring
force of the frame in the proposed method, and also higher modal components of restoring force are
ignored to reduce the number of degree-of-freedoms. Its validity is checked by comparison with the
results of member-hysteresis based full-mode analysis.

1. Introduction

The emphasis in seismic resistance design is shifting from ‘strength’ to ‘performance’ following the demand and
collapse of numerous structures during recent earthquake. Gradually, performance based designs are becoming a part of
code provisions with publication of FEMA-273[1] in USA and Enforcement Order and Regulation after Building
Standard Law of Japan was revised in 1998[2]. At the same time, it may be fair to say that simple and efficient methods
for capturing the essential/important features affecting the performance have not been adequately developed. The
objective of this paper is to develop a design friendly method for performance evaluation of ductile steel moment
resisting frames, which are used as the primary lateral load resisting systems in many middle-rise buildings. Proposed
research focuses on the simplifications of nonlinear dynamic procedures (NDP). This study intends to benefit the design
engineer by bringing NDP, which is usually considered complicated and costly, within the reach of a structural engineer,
who is familiar with linear dynamic analysis.

This paper presents a nonlinear dynamic procedure with partial-mode response analysis with simplified plastic
failure surface model. A safety domain about plastic collapse of an elastic-perfectly plastic frame is approximated by a
yield-polyhedron with a reduced number of failure mechanisms. To reduce the number of failure mechanisms, a
preliminary analysis based on FOSM reliability method is proposed by the authors[3][4]. This method requires,
however, an exhaustive procedure to enumerate the whole failure mechanisms, and the failure surface becomes a
convex polyhedron made of a lot of hyper surfaces even after they are reduced. Sometimes it happens to encounter the
problem of dealing with extreme points during the renewal procedure of restoring force. To avoid them, an alternative
method is proposed in this paper. The plastic failure surface is approximated by a hyper-ellipsoidal model, which has no
extreme point and provides a much easier procedure to trace the inelastic global behavior than the yield polyhedron
model. Additionally, the method proposed does not require the enumeration of enormous failure mechanisms to arrange

the hyper-ellipsoid.
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2. Analytical method

2.1 Transformation of coordinates

The equation of motion for a multi-degree-of-freedom system with viscous damping and hysteresis inelastic restoring
force under seismic excitation is represented as:

[} i} [c]- )+ {r)= - D] ) 5 M
where [M] is mass matrix, [C] is damping matrix, {x} is displacement vector relative to the ground, {f} is restoring
force vector, and § is the ground acceleration.

Here we define the transformation of displacement and restoring force into modal coordinates as:

Transformation of displacement: f}=18] (g} )

Transformation of restoring force:  {f}= L&T ]-] =l §} 3)
where {g} is modal displacement vector, {r} is modal restoring force vector, [¢] is modal participation matrix, and
b j} is the j-th base vector for force given as a column vector of [¥]= k&T]-l .

By this transformation the equation of motion on the modal space is given by:

G2 hywp gt fmy =5 @

where ; is the j-th modal damping constant, w; is the j-th natural circular frequency.

2.2 The calculation of modal displacement increment
The modal displacement increment can be calculated based on explicit numerical integration (central finite difference)
from the j-th modal component of restoring force:

- 2 (k)
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where qu("”) = qj(kﬂ)- qj(k)

*
m;

2.3 Reduced yield polyhedron model [3] [4]

A simple proposal to calculate global inelastic responses of MDOF steel moment resisting frames was made by the
authors [3][4], where a global yield surface model of a frame was arranged and simplified based on the limit analysis
and the first-order reliability method (FORM). First, a procedure was proposed for ‘vibration mode-failure mode’
integrated analysis, wherein the restoring force characteristics are represented by a global convex yield polyhedron
model, instead of a set of member hysteresis based models usually adopted in the inelastic structural analysis. Then
FORM is extended to seismic design in the form of ‘random pushover analysis’, to choose an appropriate number of
failure mechanisms to be considered in the analysis.

(1) Equivalent-Static Seismic Loading Model

A simple equivalent-static seismic loading model is adopted only in the preliminary analysis to choose important failure
mechanisms. As the ground motion varies randomly in time, mean value or expected value of modal restoring forces is
taken as zero, and the vibration modes are considered independent. In an usual notation of E() for expected value:

El;)=7;=0 5 Elyr;)=0 G#j) (6)
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arj =c m*f ' Saj (7)

where 7; is the j-th modal restoring force, m’; is the j-th effective mass, o,; is standard deviation of the modal restoring

force, c is a constant which is determined from the relationship between the standard deviation of modal restoring force
at arbitrary points in time and its mean extreme and is taken tentatively as one-third for all the vibration modes [5] [6],
S,; is ordinate of acceleration response spectra, which depends on natural period and damping of j-th vibration mode.

(2) Reduction of Failure Mechanisms

Stochastic limit analysis, based on FORM, is applied for identification of more likely failure mechanisms. It is assumed
that the seismic action and the resistance are independent of each other. The performance or limit state function denoted
by g corresponding to each failure mechanism can be written in terms of the energy dissipated by plastic portions and
the work done by seismic action as:

m n
8= XMy |05~ X ajor; ®
i=1 j=1
where m is number of plastic portions (plastic hinges) and n is number of vibration modes. The energy dissipated by
m
plastic portions is represented by Y M, -|6p,-| , where M, is the basic variable of element moment capacity and |e,,,-|
i=l
denotes the rotation of the corresponding plastic hinge. The work done by the seismic action is expressed in the modal
n
coordinates and represented by Y., a;-r; , where g; is the j-th modal component of plastic deformation compatible with

j=1

the before-mentioned plastic hinge rotations.

m n
Mean value of g: g = XMy, '|9pi1 -Xa;h ®
i=1 j=1
m n
Standard deviation: op = J Y a,,,pi2 ‘Bpiz +Y (a,j)z -(a j)z (10)
i=1 j=1
where M pi» 7; aremeanvalues,and o, , o; are standard deviations of resistance capacity and load, respectively.

As the mean values of seismic action is taken zero if we adopt the equivalent-static model in the previous section,
the FOSM reliability index, denoted by g, corresponding to the mechanism failure is given by:

Reliability index: p=thm L ,00[0,] /ag an
g i=l

A lower reliability index indicates higher probability of failure. In our view, failure mechanisms with probability
less than about 10% of the most likely ( S, ) failure mechanism can be excluded from further analysis. Alternatively,
failure mechanisms with g2 B, +A can be neglected. In case of a normal distribution and if By, 214, A equal
to unity would be adequate. In addition, the maximum number of failure mechanisms considered should preferably be
limited to the number of vibration degrees of freedom, to avoid possibility of ill conditioning during dynamic analysis.

For structures with very large numbers of potential failure mechanisms, mutual correlation between the failure

mechanisms should be considered, as many of them may be partially correlated. PNET [7], which stands for
probabilistic network evaluation technique, can be applied for such a situation. The correlation coefficient between the

m n
two failure modes @ and b, whose performance functions are denoted by ga=ZMap,--|6api|— Ya;r,
i=1 j=1

m n
8 = LMy -|6,,p,-| - ¥ a;r; respectively, can be written as:
i=1 =1
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where o,,,

o, are standard deviation of g,, g, respectively, and if we ignore the uncertainty of moment capacities,
they can be written as:

Z 2
Y a; by oy
L (13)

Pap = P ”
2 2
Yaj oy Ybioy

j=1 j=1

Failure mechanisms with correlation coefficients more than a demarcating correlation are unified and represented

by a single failure mechanism having lowest reliability index among them.

2.4 Ellipsoidal yield surface model

Another much simpler approach is proposed by use of an ellipsoidal approximation of global safety domain against
plastic collapse. From general view of exact safety domain, an ellipsoidal body can outline a convex figure of exact
yield polyhedron. Such a hyper-ellipsoid in n-dimensional force space can be determined so that it shares different
n(n+1)/2 reference points on the exact yield surface. Then pushover limit analysis on a frame under n(n+1)/2 different
load patterns is performed to obtain these reference points, and the safety domain is approximated by an n-dimensional
hyper-ellipsoidal body.

(1) Pushover Limit Analysis to Obtain Reference Points on Yield Surface
On the limit analysis of the frames, the following problem is solved:

Maximize A (14)
Subject to Equilibrium equation A-{B}=[ con ] {M} (15)
Plastic condition |M;|< M, (15%)

where A is load factor, {Py} is load pattern vector, [Cor] is connectivity matrix, {M} is element moment vector, M, is
element moment capacity of M;.

It is convenient to represent the load pattern vector as a linear combination of modal load patterns corresponding to
elastic seismic load effect as adopted in the previous sections. In a general form, it is expressed by:

ARY=BT El= b= n- b et ) (16)
If we choose two dominant load patterns denoted by {p,} and {pl} instead of considering all the vibration modes,

and if we consider the ratio of dominancy based on the magnitude of elastic seismic load effect, then a simplified load
pattern may take the following form:

B}t aa ) an

where |a,-j[ =m'j- Sa(Tj)/m*i -8,(@)

The combination of i and j is determined as follows:

An ellipsoid in n-dimensional force space can be determined so that it shares different n(n+1)/2 reference points on
the exact yield surface. Then pushover limit analysis on a frame under n(n+1)/2 different load patterns is performed to
obtain these reference points.

First, nx n square formation is prepared, it is better to arrange as the parameter with high probability of occurrence
appears many times. And then, the group of load pattern is determined as illustrated in Fig.1 because there are n (n+1)/2



combinations at the upper left triangular potions in the n x n square formation.
After the load pattern is determined, the limit analysis of the structure is performed to obtain the reference points.

These reference points are supposed to satisfy the following equation:

#*LT~[A]'{r*L=1 k=1, (p+1)2 (18)

where [A] is a symmetrical matrix that controls the shape and the inclination of the n-th dimensional hyper-ellipsoid.
The number of indeterminate components of matrix fA] is n(n+1)/2, and then they can be determined by solving the

simultaneous equation (18).
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Fig.1 Load pattern selection used in preliminary pushover limit analysis

(2) Tracing of restoring force Point

The modal displacement increment is applied to the frame, and inelastic restoring force is traced and renewed in the
following manner, There are two methods possible to trace and renew the restoring force: The first is that the restoring
force is traced on the full-mode restoring force space while the partial-mode technique is used for the integration of
equation of motion, and the second is that the tracing of restoring force and the integration of equation of motion are
both performed on the partial-mode restoring force space. The latter handling is easier and adopted herein.

Now the intersection of ellipsoidal yield surface model on the partial-mode restoring force space is denoted by
FY -14] F)=1. After modal displacement increment is obtained by central difference method, modal restoring force

increment is calculated by assuming that the structure remains in elastic range as:

(7 }= |, | g} (19)



where [I?e] is modal generalized stiffness matrix given by [IZ;]= Diag[k}’] as k= [pj}r k] [pj ]
If the structure would remain in elastic range, the new modal restoring force would be given by:

Frwl= FO+ a7} 0)

And then, it is judged by the following equation whether the new location of modal restoring force is inside the

hyper-ellipsoid or outside:

¥ [A] #. <1 (nside of hyper-ellipsoid) (21a)

new

¥ -[4] §.n}>1 (Outside of hyper-ellipsoid) (21b)

new

If the location is inside the hyper-ellipsoid, the modal restoring force at next step is given by k("”)]= {Fe . Butif

the location is thrown over the hyper-ellipsoid, the following modification of modal restoring force is carried out:
The intersection of path and the hyper-ellipsoidal yield surface is denoted by {7.yoq ],

Fovoss 1= FO - 7} @)

where r= 22N m008) gy [ E0), o= il 05, - FOT ] )

L]

Next the plastic displacement increment {Ac}l,} is assumed to follow the flow rule or normality rule. {A{}p} is

given by - lAJ {oross ] if @ normal direction is represented at {7, }. Then the restoring force at next step F(k”)}

satisfies the following equation including an indeterminate factor:
Fe)- fo ok} o)

Fo k.| bz -a7,) T
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Fig. 2 Renewal of modal restoring force

The indeterminate factor yp is solved from the condition that #(k ”)} lies on the surface of the hyper-ellipsoid.

=V1“\}1’12‘)’2'()’3‘1) (24)

V2

where Vio V2o and Yy, are given by y = {new : [‘;] hpull}’ V2= Fipull}r ’ [Z] hpull} , and V3= {;;ww} [ ] { ew}

respectively.
3. Examples
3.1 Yield polyhedron model

(1) An Lllustrative Example of Two-story Single-bay Frame
A two-story single-bay frame as shown in Fig. 3 is taken to study basic principles of yield polyhedron. The ratio of span
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(L) to storey height (H) and mass at 2™ floor to roof are 1.6 and 1.5464, respectively. The total weight (W) of the frame
is 484 kN. 2% modal damping is assumed for both vibration modes. The elastic natural periods for the first and the
second mode are 1.23 and 0.472 seconds, respectively. The frame is analysed for El Centro (NS) 1940 ground motion
with the peak ground acceleration scaled to 0.3mv/sec’. The failure modes possible in this situation are shown in Fig. 4.

(Mpb2, Tb2)

. H

= (Mpbl, Tb1) |

g :

: !
H
1

L

Fig. 3 Two Story Single Bay Frame 1* Story Local Collapse 2" Story Local Collapse Combined Mechanism
Fig. 4 - Failure Modes of the two-story frame

The response of the structure in terms of restoring force is confined within a convex region bounded on all sides by
the failure planes. Fig. 5 shows such a yield polyhedron for the two-story frame. The f; and f; represent the restoring
forces (in original space) at the second floor and roof level, respectively. Representation of the restoring force
characteristics of the structure by a yield polyhedron model considerably reduces the size of the analysis, compared
with member-hysteresis based models usually employed in the inelastic frame analysis. The likely failure mechanisms
can be drawn based on the experience, or the stochastic limit analysis using compact procedure [8] [9] may be used for
complex situations, Sequence of yielding before a mechanism formation i.e. partial yielding is ignored in the yield
polyhedron model. The locus of restoring forces can move within or tangentially on the boundary of the yield

polyhedron, as shown in Fig. 6 for the two-story frame.
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Fig. 5 Global Yield Polyhedron in Original Restoring Force Space Fig. 6 Locus of Restoring Force and Design Points in Modal Space

(2) Reduced yield polyhedron model for six-story two-bay frame
A six-story two-bay frame shown in Fig. 7 is studied hereafter. The storey height is 3.75 m and span of each bay is 6 m.
The member properties and floor weights are shown in Table 1 and 2, respectively. The modulus of elasticity and yield
stress for steel is taken as 205 GPa and 235 MPa, respectively. A constant modal-damping ratio of 2% of critical
damping is considered for all the vibration modes. The vibration periods are shown in Table 3. This frame is analysed
for El Centro (NS), Hachinohe (EW), Fukiai (NS) ground motions and an impuise equivalent to 0.75 m/sec initial
velocity. The details of the ground motions are shown in Table 4. The impulse level is selected from consideration of
similar order of deformation pattern in comparison with other ground motions. The energy input spectra and
acceleration response spectra are shown in Figs. 9 and 10, respectively.

As mentioned in the previous section, a set of failure mechanisms with correlation coefficient more than a
demarcating correlation py can be unified. In an ordinary reliability analysis involved with a failure probability range
from 10" to 107, a standard value g, = 0.70 is said to be appropriate [7]. Adoption of such a low value for the present

purpose, however, resulted in the elimination of the majority of the failure modes for the six-story frame studied herein.



And then, a relatively high value of p;=0.97 was found to give satisfactory result. Tables 5 and 6 list the reliability
indices of the failure mechanisms for the two-story frame in the previous section and the six-story frame, respectively.
Table 7 lists the failure mechanisms obtained by PNET for the six-story frame.
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Fig. 7 Six-story Two-bay frame Fig. 8 Collapse Modes for six-story two-bay frame under lateral loading
Table 1. Member Properties Table 2. Floor Weights Table 3. Vibration Period (sec)
Member ID | Momentof | Plastic Moment Floor Weight || Mode Time
(Fig.70) | Inertia (10®m®* | Capacity (kN.m) (kN) Period
1 2490 83.2 Roof 380 1 2.57
II 2 8090 194 " 6 589 2 0.98
3 5700 151 5 589 3 0.57
[ 4 11300 247 4 589 4 0.43
5 14900 302 3 589 5 0.31 |
6 23100 307 2 589 6 0.23 I
7 16300 239
8 11800 189
9 8360 148
10 3890 86.3

The failure modes considered under horizontal loads are shown in Fig. 11 and have been drawn based on the
experience. These include local story collapse mechanisms and combined mechanisms. Locations of the plastic hinges
are assumed at the top and bottom ends of the columns, which have undergone side sway, and at the floor beams end
connected with the side columns. At the junction of the floor beams and the central column, plastic hinges are assumed
in the beams or in the columns, whichever is having the least summation of the plastic moment capacities at the
junction.

Yield polyhedron approach enables a quick examination of the seismic response in terms of the failure modes of the
structure, which is quite informative and helpful in understanding critical/ important design situations and in taking
remedial measures.
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Table 4 — Details of Ground Motions

Ground Earthquake Peak Ground | Duration
Motion Acceleration (Sec)
(in  gravity
acceleration)
H El Centro | Imperial Valley, | 0.325 10 "
(NS) 1940
Hachinohe Tokachi - Oki, 0.186 30
(EW) 1968
" Fukiai (NS) | Hyogoken 0.700 20
—Nanbu, 1995

Table 6 Reliability Indices for

Failure Mechanisms of

Two-story Frame

Table 7 Failure Mechanisms by

PNET for Six-story Frame

Seismic Failure Modes
Failure Mode Reliability Motion
Index El Centro 19,14,17,10,20,1
First Story 1.67 Hachinohe 14,19,5,3,2,21
Second Story 2.68 Fukiai 19,14,17,10,3,1

Combined

1.79

Impulse

)

19,14,5,17,1,8

Fig.11 Design Point of Failure Modes
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Table 5 Reliability Indices for Failure Mechanisms of

Six-story Frame

Failure Reliability Index
Mode El Hachi- | Fukiai Impulse
Centro | nohe
1 1912 1.232 1.439 2.026
2 1.943 1.204 1.450 2.080
3 1.939 1.152 1.437 2.034
4 1.986 1.142 1475 2.037
5 1.955 1.102 1.455 1.977
6 2.110 1.184 | 1.574 2.127
7 2.189 1.324 1.618 2.261
8 2.020 1.178 1.498 2.063
9 2.011 1.147 1.505 2.036
|| 10 1.865 1.051 1.395 1.878
1 2.054 1.156 1.530 2.070
12 2.392 1.398 1.799 2.367
13 2.107 1.228 1.609 2.129
14 1.803 1.050 1.358 1.851
15 2.027 1.186 1.505 2.098
16 2.715 1.668 2.088 2.723
17 1.861 1.154 1.387 1.982
18 2.097 1.324 1.539 2.288 "
19 1.560 1.057 1.138 1712 |
20 1911 1.360 1416 2.230
21 2.273 1.982 1.835 2.623

Namning = 2%

El-Centro (NS)
= = = =Hachinohe (EW)
oo Futkiai (NS)
wumeses Impulse

Time Period (Sec)

Fig. 10 Acceleration Response Spectra



(3) Response analysis with reduced yield polyhedron model

The six-story frame is analysed for El Centro (NS), Hachinohe (EW), Fukiai (NS) ground motions and an impulse of
0.75 m/sec velocity, by the proposed methods, referred to as RA To confirm the validity of RA, results have been
compared with a member hysteresis based analysis, performed using a computer program DIANA [10] with all
members being idealised as elastic-perfectly plastic. As there is vast amount of data, response histories of the top storey,
the bottom storey and the most damaged storey i.e. fifth have shown for comparison. Fig. 12 shows the response
histories of the storey drifts. Peak response values and time variations are well simulated. Fig. 13 compares the

hysteresis loops of the storey shear v/s storey drifts. RA provides close approximations to DIANA.
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Fig. 12 Response History of Storey Drifts

3.2 Ellipsoidal yield surface of multi-story steel frames

(1) Ellipsoidal approximation of yield polyhedron of three-story frame

The safety domain against the plastic collapse of the multi-story frame is approximated as the n-dimensional
hyper-ellipsoidal yield body, and a 3-story frame shown in Fig. 14(a) is studied. Pushover limit analysis is performed
for this frame after the load pattern is determined as shown in Fig. 14(b). Furthermore the intersection of yield surface
on the 1st and 2nd modal restoring force space is drawn in Fig. 14(c). Similarly, it is also considered that the number of
mode is reduced before the limit analysis is performed. The results of the above-mentioned method are shown in Fig.

14(d), these show good agreements comparing to the exact yield polyhedron.
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(2) Full vibration-mode response analysis of two-story single-bay frame
An ellipsoidal body approximates the global safety domain against plastic mechanism formation of a frame, and a full
or partial vibration-mode response analysis is performed. The results of response analysis and member-hysteresis based
analysis are compared: The two-story single-bay frame in Fig. 3 is analyzed with full or (two) vibration-modes for El
Centro NS 1940 320gal, and the following cases are studied for comparison:

1) Member-hysteresis based analysis, DIANA

2) Full mode response analysis with yield polyhedron model

3) Full mode response analysis with yield ellipse based on the pushover analysis
The time histories of story drift are shown in Fig. 15, and the loci of modal restoring force are shown in Fig. 16. The
results of analyses based on simplified models show good chasing after the result of member hysteresis based analysis.
And the locus of modal restoring force based on the yield ellipse approximated in case 3) looks very similar to the locus

based on the exact yield polyhedron in case 2).

Member hysteresis based analysis full mode response analysis - full mode response analysis ‘
with yield polyhedron with yield ellipse
Fig. 15 response history of story drift

15000
100004
som]-
<m0
2000 15000 o0 00 0 Sa® 100 1500 2000 20000 1000 1000 50§ 5600 10000 16000 20000
Member hysteresis based analysis full mode response analysis full mode response analysis

with yield polyhedron with yield ellipse
Fig. 16 loci of modal restoring force

(3) Partial vibration-mode response analysis of six-story two-bay frame
The six-story two-bay frame in Fig. 7 is analyzed for El Centro NS 1940 320gal. Following three cases are studied:

1) Member hysteresis based analysis, DIANA

2) Partial vibration mode analysis (6DOF) with a yield polyhedron model with six relevant failure mechanisms

3) Partial vibration mode response analysis (2-DOF) with a yield ellipse model

The results of response history of story drift are shown in Fig. 17, the loci of modal restoring force are shown in Fig.
18. The maximum of drift in case 3) is large a little, however the partial mode response analysis with yield ellipse

approximation has comparatively good chasing to member hysteresis based analysis in outline.

4. Conclusion

A simplified method of nonlinear dynamic response analysis on a moment-resisting steel frame to a seismic action is
proposed: The method is based on two kinds of models for a safety domain against plastic collapse or a global yield
surface of a frame: One is a yield polyhedron model with reduced number of failure mechanisms by the first-order
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reliability method, and the other is a yield hyper-ellipsoidal model arranged to share some exact reference points on the
yield surface obtained from pushover limit analysis. Either model is checked by comparison with detailed member
hysteresis based analysis, and found to provide a consistently good prediction of global inelastic responses.
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