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DESCRIPTION OF LARGE SOIL DEFORMATIONS BY USING
LAGRANGIAN POINTS*

K. KONAGAT' and J. JOHANSSON?

A Lagrangian Particle Finite Difference Method (LPFDM) is presented for analyzing large
deformations of soils. By introducing the concept of Lagrangian material points into a FDM
or FEM, numerical problems related to large deformations can be avoided. The material
points move with the material and carry all necessary information, which for each time step
is mapped back and forth between the points and a grid where the equations of motion are
solved. LPFDM describes on a Eularian grid solid motions obtained through a simple
Gaussian calculation scheme similar to FLAC. The method thus retains the merits of FLAC
avoiding mesh distortion and convection problems.

1. INTRODUCTION

The 1999 Kocaeli and Duzce Earthquakes, Turkey, and Chi-Chi Earthquake, Taiwan, have
raised the need to reduce the fault-inflicted damage to structures, a formidable problem
demanding a lot of research and discussions. Faulting is not the sole cause of large deformations
of soils. Kobayashi found that more than half of all deaths in large (M > 6.9) earthquakes in
Japan between 1964 and 1980 were caused by landslides. To discuss plausible remedial
measures, it is necessary to study the possible extent of the very large plastic deformations built
up in soils during earthquakes. For such studies, suitable numerical tools are necessary.

For studying large deformations of soils, numerical methods such as FEM or FDM have been
widely used. For example, the finite difference based FLAC (Fast Lagrangian Analysis of
Continua, Cundall, 1979) successfully calculates large strains by using low-order strain
elements. However, when dealing with large strains, highly distorted elements often account for
inaccurate results.

In the field of computational fluid dynamics, where history-dependent materials are less
common, purely Eulerian methods are often used, and Sulsky et al. (1992, 1994) extended it
further to solid mechanics. The method is referred to as the Material Point Method (MPM). In
the MPM, material points move through the cells of a computational mesh carrying all the
necessary Lagrangian parameters such as mass, stress, strain, position, strength etc. The method
thus takes advantage of both Eulerian and Lagrangian features, by avoiding mesh distortion and
convection problems.

The LPFDM (Lagrangian Particle Finite Difference Method: Konagai and Johansson, 2001)
used herein is similar to FLAC in that constant strain increment elements are used but the
increments are more rationally computed with the use of the Gauss divergence theorem. The
present finite difference scheme, in which a global mass matrix is not calculated, reduces
computational time greatly and can be adapted to arbitrarily-shaped cells without changing the
basic descriptions of the formulation. Like the MPM, LPFDM allows for adaptive meshing.

* The greater part of this paper is taken from the authors' latest publication in the Proceedings of the
Workshop on Seismic Fault-induced Failures, RCAST, University of Tokyo, 2001.
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Figure 1. Stationary lattice and material points Figure 2 Triangular cell

2. LAGRANGIAN POINT FINITE DIFFERENCE METHOD (LPFDM)

2.1. Calculation scheme
LPFDM embodies an explicit time-marching scheme, while implicit, matrix-oriented solution
schemes are more common in finite element methods. All Lagrangian variables are carried by
unconnected Lagrangian material points (See Figure 1); the points, as a cluster, describe the
mass of the material. An Eulerian mesh is used to solve the equations of motion in each time
step. Lagrangian parameters of all material points included in one cell of the mesh contribute to
the cell’s nodes, and accelerate them. As a consequence, the cell deforms carrying the material
points with it, but it is shifted back to its original position for the next calculation cycle.
Assuming that the updated nodal displacements are know, strain increments in a cell can be
obtained by using Gauss’s divergence theorem. For an area 4 enclosed by a surface S, Gauss’s
divergence theorem has the following form in the Cartesian coordinate system as:
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I ds is the integral along the boundary S of a closed area 4;
S

=n-j; Here n and j are unit vectors normal to the surface § and along the
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/ direction of x; axis, respectively;
X; can be either x or y in the Cartesian co-ordinate system (x, ¥);
u can be a scalar, vector or tensor; and
I dA is the integral over the area 4.
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Defining the average value of the gradient over the area as:
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When the closed area is a triangle as shown in Figure 2, and # is assumed to vary linearly
along each side, the following finite difference formulae is obtained:
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one obtains from Equation (1)



where, the summation is over the three sides, and (u) ' is the average value of u over the side £.
Keeping in mind that »n As, is the projection of As, on x, axis, Equation (4) for the triangle in
Figure 2 is rewritten as:
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where, superscripts [1], [2], [3] denote local nodal point numbers in Figure 2.

Equation (4) can be used for any arbitrarily-shaped polygon to describe the strain increments
in terms of the nodal displacement increments by simply replacing # with Au™ . All material
points included in Cell J are assumed to experience the same strain increments. Given the strain
increments, the stresses for each material point are obtained from the specific constitutive

model:
(av )k, wpdate = M ((Aglf)] > (O-ij)k (50, (52)h0 ) (3

where, M() is the constitutive model, and (s,. )k are state variables for this material point. For

the explicit scheme used in LPFDM, the constitutive law is only consulted once per material
point during one time step. In LPFDM, a regular square mesh with sides parallel to x and y axes
of the Cartesian coordinate system is used (Figure 1), and the location of material point & {x(k),
y(k)} in the cell J deformed at the preceding time step is updated as:
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where, Ax(k)= x(k) - (x-coordinate of node [1] of Cell j) and Ay(k)= y(k) - (y-coordinate of node

[1] of Cell J).

When all the Lagrangian variables are updated at all material points, the Eulerian grid is
shifted back to its original position for the following calculation cycle. The mass of each cell is
then obtained by adding up all the masses of material points included in the cell J:

M), =2 m 7

keJ
The stress is smeared over the cell:

m
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where, the quotient of material point mass and density m, / o, is the volume of the material

point k. In order to obtain the nodal forces at node [k] of Cell J (see Figure 1), a virtual unit
displacement is applied to node [k]. The stress components (o-) ; smeared over the cell J must

perform the same amount of work done by the nodal forces E[k] (i = x or y): this calls for;
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where, (x; x;) iseither (x y)or (y x).
At each node (global node number = (k)), the forces from all surrounding cells (elements) are
summed up to give the net nodal force;
F(k) - Z‘Fi[k] (i=x ory). (10)
[k]e(k)
This vector includes contributions from applied loads and body forces due to gravity. Gravity
forces are computed from:
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where m® is the lumped mass at the node (k), defined as 1/4 of the masses of the cells
connected to the node. If a connected cell does not contain any material point, its contribution to
the nodal force is omitted. The nodal force accelerates the lumped mass, and the acceleration is
integrated to obtain the nodal displace increment:
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Since a Eulerian grid is used in the LPFDM, a convection term should be added to Equation
(12). The convection is compensated for with the following procedure:
Au P (- Ar12) = A, (6 - t12)-(1- (A6 ) o )- A, P (0= A12)- (A ) (13a)

A, (- At 12) = A, (- 812)- (- (s, ) )~ 40, (1= A212)- (A8 ) (13b)

where, J® is the cell in which the previous mark of nodal point (k) on the material is found.

When quasi-static behaviors are concemed, the motions of nodes are damped with minimal
computational effort. A form of artificial damping, called local non-viscous damping (Cundall,
1987), is used in LPFDM in which the damping force on a node is proportional to the
magnitude of the unbalanced force. The direction of the damping force is taken in such a way
that energy is always dissipated. Equation (12) is thus replaced with the following equation:
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D,.(k) is the damping force, ¢ is a constant.

2.2. Necessary items

A fixed mesh, in an arrangement of mix x my square cells with “nodal points”, is used to
describe the locations of “Lagrangian points” (Figure 3). Areas of the lattice filled with

Lagrangian points are referred to as “clusters”. Initially, the Lagrangian points are arranged in
square in each cell of a cluster. In addition to the above mentioned items, “moving walls” are
introduced into LPFDM. A moving wall is realized by giving all designated nodes lined up on
the lattice the same displacement increments at once. When the accumulation of the increments
given to each node reaches one cell size, the displacement increments are given to the next line
of nodes.
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Figure 3. Necessary items in LFPDM.

Table 1. Mechanical properties

Young’s modulus; 5% 10" N/m?
Poisson’s ratio: 0.47
Density: 1700 kg/m®
Internal friction 0.5 rad
angle:

Cohesion: 9800 N/m?

Strength reduction: Cohesion is reduced by 50%

3. SIMULATIONS

Each Lagrangian point is assumed to be elasto-plastic, obeying the simple Mohr-Coulomb’s
yield criterion. Once the peak strength is reached in one Lagrangian point, chemical bonds or
granular fabrics among grains are assumed to be broken causing the cohesion to be reduced to
some prescribed extent. Table 1 shows the parameters for the material used in the examples.
Both the internal friction angles and the cohesions for Lagrangian points were given a Gaussian
distributions with mean values given in Table 1 and a standard deviation of 25% for the
following simulations (3) and 33% for the others. The shape of typical stress-strain curve for a
Lagrangian point is shown in Figure 4.

(1) Failure of steep slope

Figure 5 shows a soil mass that collapses under its own weight. The « variable was set at 0.8 in
Equation (15) for the local non-viscous damping. Despite the coarse discretization (L = 1m),
detailed features of this cliff failure were vividly described. Initially the deformation is slow, but
as plastic strains begin to accumulate, certain regions become softened and rapid shear-band
formation occurs from the toe up through the cliff. The corner wedge of the soil mass then starts
sliding down the softened slope, being accompanied by a secondary shear-band formation just
behind the scar.

x/L

(a) 2.5s (b) 5.0s
Figure 5 Simulation of cliff failure ( Af = 0.0005s)
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(2) Mass Flow through a Trap door

A mass flow through a trap door was simulated (See Figure 6). The internal friction angle was
set at 0.0 for this simulation; except that, mechanical properties are the same as those listed in
Table 1. The gravitational acceleration was given at once to the mass, and the mass started
flowing under its own weight. The opening of the door is just twice the cell size L, and yet, the
mass exhibiting a noticeably flexible nature can flow through the narrow opening. In the second
simulation (Figure 7), an obstacle was placed right above the trap door. One can see that the
soil flows past the obstacle and through the trap door. Some flow stagnation occurs around the
obstacle.

(3) Plane-Strain Compression Tests

As has bee mentioned, faulting is one of serious causes of large deformations of soils. To
obtain possible extents of fault-induced soil deformations, appropriate constitutive models are
necessary for the surface soils. Along faults, alluvial deposits including large boulders are often
found. To see how these large inclusions in a soil matrix affect the soil’s overall behavior, an
extensive study will be performed and addressed in a later publication. To demonstrate the
potential of the Lagrangian particle technique, some examples of PSC test with inclusions of
large grains/boulders follow below.

Figure 8 shows the simulation of a plane-strain compression test on a soil with the properties
given in Table 1. In order to compress the specimen, a stiff cap was put immediately above the
top end of the specimen, and was slowly driven down at a constant velocity. The confining
pressure was zero. In the figures, both the height and width of the specimen are normalized by
the cell width L. and material points were initially arranged in 4x4 square in each cell. The
stress was measured at the bottom of the specimen.

Though each material point has simple mechanical features as described in Table 1, the overall
deviatoric stress-strain relationship (Fig. 8a) exhibits a rather gentle curve. This is because the
values in Table 1 were given random deviation and the strain is the ratio of cap displacement
and the height of the specimen. Two diagonal shear bands can be seen across the specimen. The
shear-band width is strongly affected by the cell size L because strain increments are assumed to
be equally distributed over each cell. Figures 8b-8f show the PSC tests results of specimens
with grain inclusions. A perfect bonding is assumed between the grain and the soil matrix. As
can be scen, the shear bands avoid the inclusion and form below the grain in (b) and (c), but
with the grains placed further down, the shear bands can form at the top of the specimen. When
the shear bands form below the grain, the stress-strain curves fluctuate, whereas it is smoother
when the shear band forms above the grain.
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Figure 8 PSC test simulations (continued on the next page)
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(4) Reverse Faulting

To estimate quantitatively the possible extent of soil deformations caused by faulting, numerical
simulations are necessary. Figure 9 shows a simple simulation of a reverse faulting with a stiff
square inclusion. The base rock coming steadily up in the surface soil gradually pushes the grain
aside, and when the vertical offset reaches 7.5 cell size (Figure 9b), it can be seen that the
square inclusion causes some shear bands to develop diagonally up through the soil deposit, and
makes an appearance of some small bumps upon the soil surface. These fault simulations will
be extended to include underground structures such as tunnels and pipelines or bridge abutments,
and addressed in later publication.

4. LPFDM vs FLAC, MPM, FEM

The LPFDM presented herein is similar to FLAC in that constant-strain increment elements are
used. FLAC however uses an overlay scheme, in which a quadrilateral element is modeled as
two overlaid pairs of constant-strain triangles. The forces exerted on each node are taken to be
the mean of those exerted by the two quadrilaterals, and strains are eventually smeared over the
quadrilateral (Mixed-discretization procdure; Marti and Cundall, 1982). The overlay scheme
thereby ensures isotropy, and successfully restrains hourglass deformations. The procedure,
however, is not appropriate especially when the quadrilateral is badly distorted and paired
triangles’ areas are considerably out of balance. As contrasted with FLAC, hourglass
deformations do not occur in LPFDM simulations because a fixed Eularian grid is used; hence
the overlay scheme is not taken in LPFDM allowing strains to be more rationally computed

In the present scheme of the LPFDM, a convection term has to be added to a solution for the
updated nodal values. This convection term is avoided in the MPM because mapping from
material point to the grid takes place in each time step to establish updated nodal parameters
such as velocity and momentum. The procedures of adding convection and the mapping
technique are essentially the same in their effects.

Both LPFDM and MPM, when compared with FEM, have an advantage of easily describing
irregular shapes of solids and/or solid inclusions. Any arbitrarily shaped regions in LPFDM or
MPM can be filled with irregularly or evenly spaced material points, whereas in FEM, a
computationally more demanding meshing has to be performed.

5. CONCLUSIONS

LPFDM (Lagrangian Particle Finite Difference Method) was presented for amalyzing large
deformations of soils. All the Lagrangian parameters calculated at each time step are carried by
Lagrangian points, which represent the material. The numerical examples demonstrated the
potential of the Lagrangian particle technique for analyzing large deformations of soils. To
allow for more quantitative discussions, appropriate constitutive models for soils must be
‘provided. To do this, future extensions to the method should include implementation of pore
water pressure and confining pressure in the PSC tests.
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