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ABSTRACT
It is important to evaluate energy absorption capacity of frames required during a design
earthquake. An inelastic computer analysis based on mathematical modelling of energy
absorbing frames and elements makes it possible to evaluate required energy absorption
capacity. But such an analysis sometimes consumes much computation time particularly in
case of complicated structural system. This paper presents a proposal to predict energy
absorption of multi-bent steel frames by simple equivalent linear method.

INTRODUCTION

In the earthquake resistant design for structures based on energy concepts, it is important
to evaluate total input energy exerted by an earthquake and energy absorption of each
structural element. According as computer capacity becomes greater, a numerical
earthquake response analysis becomes applied better to complicated structural system. But
it is difficult to evaluate energy absorption of earthquake resistant elements and frames
accurately and efficiently. Many past researches about simple equivalent linear methods,
which evaluate plastic energy absorption, were carried out[1][2][3]. This paper proposes a
simple method to predict distribution of energy absorption over a multi-bent steel frame by
the equivalent linearization technique, which replaces hysteretic energy absorption of
structural element by equivalent viscous damping. As experienced in the past studies,
equivalent linearizaton techniques are not always effective to predict peak displacement
responses including large permanent sets. It is demonstrated here in, however, that energy
absorption of each element is well predicted even by a simple equivalent linearization
technique.

First of all, on the basis of the energy equilibrium in a linear-elastic multi-degree-of-
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freedom system, a process evaluating energy absorption is formulated. And hysteretic
energy absorption and stiffness degrading after yielding of inelastic elements are replaced
by equivalent viscous damping and equivalent stiffness, respectively, in the equivalent
linear system. As for the arrangement of equivalent-linear parameters, this paper examines
the validity of two ways of equivalent stiffness determination and also two ways of
equivalent viscous damping determination for two types of hysteresis. And then, modal
analysis on the equivalent linear system is repeated with reestimated equivalent stiffness
and equivalent viscous damping coefficient until they converge to final values.
Furthermore, the results are compared with substructuring on-line test results on four bent
steel frames([4], Photol) and the results of elastic and inelastic earthquake response
analysis.

Energy responses in linear-elastic multi-degree-of-freedom system

For the equation of motion for a viscously damped linear system with multi-degrees of

freedom is written in matrix notation as:
[M{X}+ [CHX}+[KHX} = ~[M {1}y ' 1

Where [M], [C], and [K] are the mass, the damping, and the stiffness matrices of the
system, respectively, and {X}, {X}, and {X} are the relative acceleration, the relative
velocity, and the relative displacement vectors, respectively. yis the acceleration of
ground motion.

Here we introduce the following transformation to modal coordinates.

{X}=[¢Ha} 2
where [¢] is the participation matrix obtained from the solution of the undamped free
vibration system.

By subsituing Eq.(2) into Eq.(1), we obtain:

oY ][] fi}+loT ][] Ha}+ 0T (kT[] fa} = -loT M1 lo] 5 3)

Considering the orthogonality between two different modes and Eq.(3) is rewritten as:

m(i)q-(i) @)+ C(f)q(/') )+ k(j)q(i) ® = —m(j))'i(t) (4)
where m® ¢® and k® are j"effective modal mass, j”effective modal damping
coefficient, and j” effective modal stiffness, respectively. To carry out the multipling the
term, dq = qdt , and the integration - to oo in time domain, leads to:

mPed = ED =P fq-(t)(f)zdt = —m® fjl'(t)cj(t)(j)dt (5)
@)

where EY denotes the j” modal input energy and e;” denotes the j"modal input



energy per effective unit mass. Eq.(5) means that input energy in the j”

mode is equal to
the energy dissipated by damping in the j” mode. Considering that the total energy of
vibration system is invariant to the transformation of the coordinates, total input energy

E, is expressed as Eq.(6).

E, = EEIU) (6)
Energy absorption of damping element K denoted by E ., is expressed as:
)
. 2 e . .
CK(]) =C 26 o 2h(]1) (l=]) (7)

where 8, is ™ participation factor transformed into element coordinate for the

damping element K and C, is damping coefficient of the damping element K.

Vibration model and equation of motion

The vibration model for analysis is shown in Fig.1, which is modeled as a multi-bent
steel frames composed of four planar bents and three shear floors. As for the planar bents,
two of them are reinforced by diagonal braces, respectively. Three types of models are
considered with different eccentricity due to brace arrangement. The first one is a model
with large eccentricity by placing diagonal braces in the first and the second bents, the next
is a small eccentricity model with diagonal braces in the first and the third bents, and the
last is a symmetric model with diagonal braces at two ends of the floor. Two kinds of
floors are considered; a rigid and a elastic flexible shear floor, where the stiffness of the
flexible shear floor is set equal to the initial horizontal elastic stiffness of a diagonal brace.
The rigid floor is considered only in the unsymmetrical model. There are 5 cases of the
analysis.

Translational displacements only in direction of earthquake input and rotational
movements as a rigid body in horizontal plane are considered here. The relative
displacements between adjacent bents are caused by shear deformation and rotation of
floors for flexible floors, while rigid rotation of the floor can not generate shear
deformation. According to the d'Alembert's principle we can obtain the equation of motion
Eq.(8) with 5 degrees-of-freedom. For rigid floors, only 2 degrees-of-freedom are
remained.

[M]{X}+[C, ] {X}+[K] {X}+[K,,]{X}={P} ®)

where
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ki ks, k- are the spring constants of floors between planar bent 1 and 2, 2 and 3, 3 and 4,
respectively. S, S, Sc are the distance between the bents. [K,,] and [C,,] are equivalent
stiffness matrix and equivalent damping coefficient matrix corresponding to hysteretic
behavior of each bents and diagonal braces.

Arrangement of equivalent stiffness and equivalent damping coefficient

Arrangement 1
Equivalent stiffness is assumed as initial elastic stiffness. Equivalent damping coefficient
is determined from hysteresis loops for bent and a pair of braces, which are assumed to be

elastic-perfectly plastic.

K,.«=K, )
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where K, and C, are the equivalent stiffness and the equivalent damping coefficient of

egK

energy absorbing element K. N, is the average velocity of the accumulative plastic

ductility during the period that main energy absorption occurs. And T, is the modal
predominant period, which is the largest modal contribution to the energy absorption.

Arrangement 2

The formula to determine equivalent damping coefficient is same as Arrangement 1. But,
equivalent stiffness is taken as secant modulus to the average displacement amplitude for
the period of T, .

- Ke (11)

Arrangement 3

It is assumed that equivalent damping coefficient is determined from the hyteresis loops
for frames as elastic-perfectly plastic model and for a pair of braces as a combination of
elastic-perfectly plastic model and slip model. And equivalent stiffness is taken as initial
elastic stiffness.

e-p e-p
Kqu =KK (12)
Kquslip - KKslip (13)
I R Ve (14
eqK 2 2 R 2
i 1 Ura
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where o is the modification coefficient to consider the difference of hysteresis shape
between elastic-perfectly plastic model and slip model.

Arrangement 4

The formula to determine equivalent damping coefficient is same as Arrangement 3.



And, The formula to determine equivalent stiffness is same as Arrangement 2.
Iterative procedure of equivalent linear analysis

First of all, initial equivalent stiffness and equivalent damping coefficient are assumed
as follows:

Ini Ini

Kqu = KK’ Cqu = KK (16)

Where ¢ is taken 1.0x10™*. By assuming proportional damping, modal analysis is done,

and j * modal input energy per effective modal mass, e,"”, is calculated using Eq.(5).

After energy absorption of damping eclement, E.., the average velocity of the

accumulative plastic ductility, 7 «» and the modal predominant period, 7, are determined,

renewal of equivalent linear parameters is carried out. Finally, if the equivalent linear
parameters are converged to the values assumed in last step, the procedure is completed.
At that time, E_., can be used as the prediction of hysteretic energy absorption of the
element K. If not converged, iterative procedure is continued until they converge to the
values assumed in last step. The modification coefficient for slip hysterisis, «, is taken as
0.5. Fig.(2) shows schematic block diagram of the procedure proposed.

Results of the equivalent linear analysis

Fig.(3) shows the results of equivalent linear analysis based on the above-mentioned four
arrangements in comparison with the substructuring on-line test results. It is found that any
of the four arrangements can be used to predict energy absorption distribution over the
structural system, and Arrangement 3 among them is particularly close to the test results.
Fig.(4) compares the results of equivalent linear analysis by Arrangement 3 with elastic
and inelastic earthquake response analysis by numerical integration. In the inelastic
earthquake response analysis, 2-type of restoring force models are adopted. One is the
simple restoring force model for braced bent, which is expressed as the parallel
combination of two elastic-perfectly plastic model and elastic model for frames, and
elastic-perfectly plastic model and slip model for a pair of braces. The other is a rather
sophisticated model for braced bent and bent, skeleton shift model[5] for bents and
modified Wakabayashi model[6] for braces. It is also found that the equivalent linear
analysis based on Arrangement 3 provides a good prediction of energy responses as
accurately as the numerical response analysis does.



CONCLUDINGS REMARKS

An iterative equivalent linear procedure without -any assumption about response
magnitude, such as response ductility expected in the design. Using this equivalent linear
method, the energy absorption of multi-bent steel frames can be predicted accurately
enough for practical use.
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Note: X;-x, represent the vibration displacements, ¢ is the rotation angle of the floor
as arigid body, F-F, and M are external forces and moment, and £;-F, are the
restoring forces of the planar bents.

Fig. 1 Vibration model of 5 degrees-of-freedom

Photo 1 Substructurig on-line test {4]



Initial Equivalent Stiffness and Damping Coefficient ,; K, » 5; Copx

——————— | Equivalent Stiffness, Damping Coefficient K, C, ¢

Participation factor[¢],Natural Period {T}
Modal Analysis

[
J * Modal Input Energy

el(i) - fy'(t)q'(f) (t)dt

J * Energy Absorption of Damping Element K

n )2 e{(i)
E. . =C, Zé —_—
K 2, K () ()
£ 20w

| Modal Predominant Period T

Average Velocity of Accumulative Plastic Ductility
Ep
E,T,

. . new
Renewal of Equivalent Linear Parameters (K, Coux

;=

new )

new oKy r; a =1:Elastic - Perfectly Plastic Model
1., \a=0.5:Slip Model

Yes End

Fig. 2 Schematic block diagram of the procedure
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Fig. 3 Results of equivalent linear analysis by four arrangements
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Note BU[I-0J: O] shows the position of braced bents and [ shows the type of
Floor(flexible or rigid).

Fig. 4 Comparisons of equivalent linear prediction with numerical simulation
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