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ABSTRACT

A simple and efficient technique for nonlinear analysis of structures was developed and verified by
the authors. The results showed good agreement in following the initiation, location and propagation of
cracks and in calculating failure load. One of the main factors which was not taken into account in the
previous works using elements with three degrees of freedom, is Poisson's ratio. In this paper, we introduce
a new technique to deal with this problem. This technique can be applied in both linear and nonlinear cases.
We apply the new technique to compression test of specimens subjected to uniform compression stresses.
We compare calculated Poisson's ratio from simulation result with theoretical one, and find good agreement
between them. This indicates that the newly proposed method can be a good tool to simulate the behavior
which is mainly governed by the Poisson's ratio like effect of confinement in concrete columns and/or soil.

INTRODUCTION

Although there are many phenomena in which the effects of Poisson's ratio are minor, in some cases,
Poisson’s ratio plays an essential role governing the phenomena. For example, effect of lateral confinement
for columns subjected to axial forces is a typical case. This effect can be taken into account using Finite
Element Method (FEM), however, fracture behavior can not be properly followed using the FEM especially
after separation of structural members. Recently, many other methods were developed to deal with fracture
behavior problems. These methods mainly assume that the elements are rigid, and hence, the Poisson's ratio
effect is not taken into account. The Rigid Body and Spring Model, RBSM"*¥ and the Modified or
Extended Distinct Element Method (MDEM or EDEM)*) are the examples of these methods.
Unfortunately, these methods have less accuracy comparing with the FEM, especially, in small deformation
analysis. The MDEM or EDEM has better accuracy in large deformation analysis, where the structure
members are totally separated and behave as "Discrete” elements in the space.

A new simple and accurate technique was developed by combining the advantages of both groups of
the models, FEM and the other methods. It was proved in Ref. (6) that numerical simulation using the
proposed method can be conducted till the structural failure in reasonable time with reliable accuracy. With
the method, the study region is considered as an assembly of virtually divided small elements. These
elements are connected by distributed springs in normal and tangential directions. The formulations for
spring stiffness and spring failure conditions were developed so that the springs surrounding the element
totally represent the element deformations and failure. The effects of Poisson's ratio were not taken into
account in the formulation presented in Ref. (6). The objective of this paper is to introduce a technique to
consider Poisson's ratio effects. The numerical results are compared with those obtained from theory and
accuracy of the results is verified.
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ELEMENT FORMULATION

The two elements shown in Fig. (1) are assumed to be connected by pairs of normal and shear
springs located at contact points which are distributed around the element edges. Each pair of springs totally
represents stresses and deformations of a certain area of the studied elements. The total stiffness matrix is
determined by summing up the stiffness mairices of individual spring around each element. Failure of
springs is modeled by assuming zero stiffness for the spring being considered. Consequently, the developed
stiffness matrix is an average stiffness matrix for the element according to the stress situation around the
element. In the 2-dimensional model, three degrees of freedom are considered for each element. This leads
to a relatively small stiffness matrix (size: 6x6). Stiffness matrix is developed for an arbitrary contact point
with one pair of normal and shear springs as shown in Fig. (2). Equation (1) shows the upper-left quarter of
stiffness matrix. In this formulation, the stiffness matrix of an element depends on the contact point location
(distance L and the angles 0 and @) and the stiffness of normal and shear springs which are determined
according to the stress and strain situations at the contact point location. The spring stiffness is calculated
simply by Eq. (2), where d is the distance between springs; T the thickness of the element; “a” the length of
the representative area; E and G the Young’s and shear modulus of the material, respectively.

sin?(®+a)K, ~K,Sin(0 +a)Cos(8+a)  Cos(6+o)K,LSin()
+Cos®(8+ @)K, +KSin(0+a)Cos(8 +a) - Sin(6 + a)K,LCos{(cx)
~ K, Sin(0 + a)Cos(8 + o) sin®(8 + @)K, Cos(8 + 1)K ,LCos{ct) .

+ K,Sin(8 + o) Cos(6 + at) +Cos? (0 + @)K, +Sin(8 + o) KLSin(or) @

Cos(B + a)KLSin(cr) Cos(6 + @)K, LCos{at)- *Cos?(0)K,,

-Sin(8 +o)K,LCos()  +Sin(8+ a)K,LSin(cr) + I2sin?(o)K,q
Kn=E*d*T and KS=G*d*T @)

a a

Normal and Shear Springs—\

—h
tase
d_,
a
i
b
%
dJ
Area represented
by a pair of normal
and shear springs
a
Fig. (1) Spring distribution and area of Fig. (2) Element shape, contact point and
influence of each pair of degrees of freedom
springs



RIGID ELEMENTS AND FLEXIBLE ELEMENTS

Referring to Fig. (1), vertical deformations do not
affect the horizontal deformations. This indicates that
elements are rigid and no lateral deformations are transformed
through element edges. This is equivalent to having zero
Poisson's ratio value. The main objective of this research is
how to transform element behavior from rigid body state to a
flexible state. Two main approaches can be adopted:

The first approach is by giving additional two degrees
of freedom to the elements as shown in Fig. (3). The total
number of degrees of freedom becomes 5 for each element.
Three degrees of freedom (u, v and r) are for rigid body
motion of the element and additional two components (uu and
vv) are the relative deformations between the vertical and  Fig.(3) Suggested degrees of freedom to
horizontal edges. The uu and vv correlate the deformations of consider Poisson's ratio effect
element edges based on Poisson's ratio. Adding these effects
to the stiffness matrix proposed in Eq. (1), the effects of Poisson's ratio can be considered. Although this
approach is applicable, it has two main disadvantages. These disadvantages are:

- A coupling effect occurs between the degrees of freedom representing the rigid motion of
elements and those representing the relative deformations between element edges. This effect
makes the calculation of strains and stresses very difficult in comparison with the case where the
effects of Poisson's ratio are not considered.

« The number of degrees of freedom increases from 3 to 5. This means that the time for
assembling the stiffness matrix and for solving the equations gets to be more than double
[(5/3)*]. Moreover, the requirement of computer memory capacity also drastically increases.

The second approach, adopted in this paper, is simple and does not have the disadvantages of the
first approach. By the second approach, the effects of Poisson's ratio can be taken into account even when
three degrees of freedom are used. Although the element motion is as rigid body, element shape is
deformable. The idea is simply by correlating the stiffness matrix of each element edges by those of
adjacent edges. The idea is illustrated in the next sections.

GEOMETRICAL DEFINITIONS

Assume the elements arrangement as shown in Fig. (4). As a general case, the element number (0) is
surrounded by eight elements. Each element has three degrees of freedom and four edges numbered from 1
to 4, refer to Fig. (4-b). The factors "f" as shown in Fig. (4-a) represent the element continuity which will be

illustrated in the following sections:
fijk=fij*fik 3)

Where, "i" is the element number, j and k represent edge numbers. The factor "fij" is equal to one if
connecting springs of element "i" at the edge "j" exist, like "f52" and "f53". If the element at edge "j" is an
edge element or the springs are failed because of cracks, "fij" is set to zero, like "f51" and "f54". This means
that "fijk" is equal to one when the connection of the element "i" at the edges "j" and "k" is valid, like
"f523". Otherwise, "fijk" is equal to zero, "£512", "f534" and "f541". These factors are used to develop the
stiffness matrix which enables us to take into account the effects of Poisson's ratio in general for any element

configuration.
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Fig. (4) Element configuration and continuity factors definition

NUMERICAL ANALYSIS PROCEDURE

The original stiffness matrix, which does not take into account of the effects of Poisson's ratio, is
developed by summing the stiffness matrices of springs around each element. Additional terms are given to
consider the Poisson's ratio. For each degree of freedom, the additional stiffness matrix terms are developed
by assuming a corresponding displacement in the direction of the studied degree of freedom and calculating
the straining action at the centroid of each surrounding element. Figure (5) shows the additional terms
corresponding to horizontal displacement of the element (0). Figure (6) deals with vertical displacement and
Figs. (7-a) and (7-b) deal with rotational degree of freedom, These terms are added directly to the global
stiffness matrix.

Referring to Fig. (5), horizontal displacement is applied to the element (0). All other degrees of
freedom are restrained. Springs between the elements (0 and 2) are subjected to compression. The area
represented by the compressed springs, group "A", is the right half of the element (0) and the left half of the
element (2). Compression forces (horizontal) between the elements (0 and 2) leads to lateral (vertical)
displacement for the area represented, group "A". This lateral displacement is a function of Poisson's ratio.
As this lateral displacement is prevented, because all degrees of freedom of other elements are assumed to be
restrained, additional stresses exist in zone "A". These additional stresses are assumed to be uniform over
the element edges. The additional stresses are transformed to the center of elements as force and moment,
and added to the global stiffness matrix. When one of surrounding elements does not exist, the calculated
secondary stresses change. For example, stress components between the elements (2 and 6) exist if the
connection between the elements (0 and 2) and (2 and 6) are valid. This means that elements exist and
springs are not cracked. For example, the element (6) does not exist, no additional stress component on the
element (2) is used. This means that "f21" (element 2 and edge 1) is equal to zero. The stiffness matrix
components corresponding to the applied unit displacements are determined by transmitting the calculated
secondary stresses to the centroids of the corresponding elements.
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Fig. (5) Secondary stresses due to horizontal

displacement of the element (0)

Fig. (6) Secondar}; stresses due to vertical
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Fig. (7) Secondary stresses due to rotational displacement of the element (0)
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Table (1) Added stiffness matrix values due to unit displacement of each degree of freedom of element (0)

©) 1 2)
ul vl r0 ul vl rl u2 v2 r2
p0* mO* p0* m0* p2* m2*
(-f012 (-f012 (+f012 (+012 (-f241 (+241
0 +023 +£023 0 -f041) +f041) 0 +£234) -1234)
-f034 +034
+1041) -£041)
p0* mQ* pl* ml* pO* m*
(-f012 (-f012 (123 (+£123 (+f012 (+f012
+023 0 -f023 +f134) 0 -f134) -f023) 0 +f023)
-f034 +£034
+041) +f041)
mO* mQ* -2* ml* mQ* D/4* mQ* m2* D/4*
(-f012 (-f012 m0*D/4 (-f123 (+£012 (+m0* (fo12 (-£241 (+m2*
+023 -f023 (f012 -f134) -f041) f012 -f023) -£234) 241
+034 +f034 1023 +m0* +m2*
-f041) +1041) 1034 041 1234
041) +mi1* +m0*
123 f012
+m1* +m0*
£134) £023)
3) “) )
u3 v3 r3 u4 v4 4 ud v3 rd
pO* m0* p4* m4* -p4* -m4*
0 (-f023 (-f023 0 (+f412 (+412 0 412 412
+034) -f034) -f423) £423)
p3* m3* p0* m0* -p1* ml*
(+312 0 (+312 (-fo41 0 (-fo41 f134 0 134
-341) -f341) +034) -f034)
mO*( D/4* mQ* m4* D/4* ml* m4* D/4*
+f023 (+m0* (+f041 (+f412 (+m4* f134 -f412 (-m4*
-f034 1023 -1034) +f423) 412 412
) +m0* +m4* -m1*
m3*( 034 423 f134)
+£312 +m3* +m0*
+1341) £312 041
+m3* +m0*
£341) f034)
(6) ) @8)
ub vé ré u/ v/ r7 ud v8 r8
0 +p2* -m2* 0 p2* +m2* 0 +pd* +md*
241 241 234 1234 423 1423
+pl* 0 -m1* -p3 0 -m3* +p3 0 +m3*
f112 f112 312 312 341 1341
+ml* +m2* D/4* -m3* +m2* D/4* -m3* -m4* D/4*
f112 241 (-m2* 312 234 (-m2* 341 423 (-m4*
241 234 1423
-m1* -m3* -m3*
f112) £312) £341)




Springs between the elements (0 and 4) are subjected to tension, group "B". The area represented by
the springs subjected to tension is the left half of the element (0) and the right half of the element (4).
Tension forces (horizontal) between the elements (0 and 4) leads to lateral (vertical) displacement for the
area represented, group "B". Additional stresses exist in zone "B"".

The calculated additional stresses are based only on assumption that the element (0) is surrounded
from all directions by elements. For example, if the element (8) does not exist, no stress component exists
between the elements (4 and 8). This means that lateral displacement is permitted in the upper edge of the
element (4). To make the technique general, the calculated reaction component is multiplied by a continuity
factor representing the continuity condition of each element edge.

Referring to Fig. (6), the same technique can be applied to the vertical displacement component of
the element (0). Figure (7-a) shows the effect of rotation of horizontal edges of the element (0) while Fig.
(7-b) shows the effect of rotation of vertical edges. In all the cases, secondary stresses, calculated in case of
element rotation, are assumed to be uniformly distributed over the element edges.

Global stiffness matrix should be modified to add the consideration of the effects of the Poisson's
ratio. These effects are shown in Table (1). The effects of Poisson's ratio due to unit displacement of each
degree of freedom of the element (0) on the other surrounding elements are shown in the table.

The transmitted force and moments "p;" and "m," are defined as:

’V*Ei*ti *2
4 4

_V*Ei*ti

Q)

Pi and m; =
Where, v is Poisson's ratio; E the Young's modulus; t the element thickness; D the element size. The
subscript "i" is the element number.

It can be noticed from Table (1) that the stiffness matrix is general for any element configuration due
to the use of element continuity factors. If one of neighboring elements does not exist, its effect on the
stiffness matrix is automatically removed.

Calculation algorithm of strains is different from that in case of perfectly rigid elements. In case of
perfectly rigid elements, strains are calculated directly from the relative displacement of spring ends. When
the effects of Poisson's ratio effects are considered, the following technique is adopted after assembling the
global stiffness matrix and solution of equations:

1. For each spring, calculate the apparent strain from the displacements of spring ends, e, and s'y by:

!

€x

d d
= —5— and ¢, = ®
Where, d, and d, are relative displacements of spring ends in x and y directions, respectively. For each

spring, either €, or E'y can be calculated. The same formulae are used for calculation of strain in case

of perfectly rigid elements.
2. Calculate the average strain for each element in x and y directions, €, and €., .

3. Calculate the true strain for each spring in x and y directions, €, and €, from:

! ' ! '
€, =€, +VE, and € =& +VE, ©)

VERIFICATION OF THE PROPOSED TECHNIQUE

The numerical technique proposed is verified by analyzing elastic prism specimen subjected to
uniform compression. Simulations are carried out using two models with and without friction between
loading plates and specimen. The size of the specimens is (20x20x40) cm. The applied stresses in all cases
are the same. The Poisson's ratio is varied from 0 to 0.5 with 0.1 increment. The friction coefficient adopted
is 0.4.



Figure (8) shows the deformed shape in cases where no friction exists between the loading plates
and the specimen. Displacements are generally uniform in the specimen. Increasing the Poisson's ratio leads
to increasing both the vertical and horizontal displacements. From the simulated vertical and horizontal
displacements, Poisson's ratios are calculated and compared with the theoretical ones in Fig. (9). The results
show good agreement with theoretical results and the maximum difference between the theoretical and
calculated values is less than 1%. This gives evidence that the numerical technique proposed is accurate
enough and can be applied to structural phenomena governed by the Poisson's ratio.

Figure (10) shows the deformed shapes in cases of the specimen having different Poisson's ratios
where friction exists. In case when the Poisson's ratio, v, equals to zero, no horizontal displacement exists.
On the other hand, lateral displacement is maximum when v is equal to 0.5. Moreover, the vertical
displacement becomes maximum when v is 0.5 and minimum when v is 0. The effect of friction between
the loading plates and the specimen is also obvious.

Figure (11) shows the stress contours for (o,, Oy, T,,) in case where v is equal to 0.5. For o, it is
obvious that the effect of confining stresses leads to increasing the vertical stress near the center of the
specimen and reducing the vertical stress near the prism edges of the specimen. However, the effect of
Poisson's ratio on vertical stresses is not large. In case of 0, it is obvious that the effect of confining stress
is maximum near the loading plates, because of friction, and this effect vanishes in the middle of the
specimen. Shear stresses, T,,, is maximum near the loading plates, because of friction, and this effect
disappears at the center line of the beam and away from the loading plates.

CONCLUSION

We introduced a simple and efficient technique to deal with the effects of the Poisson's ratio. The
idea of this technique mainly depends on how to correlate element deformations with the three degrees of
freedom used for each element motion. We verified the numerical results obtained by comparing with the
theoretical ones and we got good agreement. Advantages of the proposed technique are listed below:

1. The technique is general and it can be applied to any structural phenomenon or geometry.

2. Three degrees of freedom were assumed for each element and no additional degrees of freedom were
adopted to deal with this new factor.

3. The CPU time for solving equations is not highly affected because of no additional degrees of freedom.
Only the time of assembling the global stiffness matrix increases. This increase is a function of the
number of elements, not the number of springs. Moreover, no additional computer memory capacity is
required as the dimension of matrices does not change.

4. The technique can be easily applied to the effects of reinforcement bars and different material.

5. With the technique, simulation can be performed in both linear and nonlinear cases, and also before and
after generation of cracks.
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Fig. (9) Comparison between theoretical and calculated Poisson's ratios
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