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ABSTRACT

A new method for fracture analysis of reinforced concrete structures is proposed. The concrete is
modeled as an assembly of distinct elements made by dividing the concrete virtually. These elements are
connected by distributed springs in both normal and tangential directions. The reinforcement bars are
modeled as continuos springs connecting elements together. Local failure of concrete is modeled by failure
of springs connecting elements when the stress calculated from forces acting on springs exceed the critical
stress. The element formulation and the computer code were developed and the accuracy of the method
were verified by comparing many experimental results. In these experiments, the results showed good
agreement in determining the failure load, the load-deflection relations, the prediction of crack initiation,
crack location and crack propagation. The formulations used to develop this method are-simple and efficient
in modeling the mechanical behavior of RC structures.

INTRODUCTION

Failure analysis of reinforced concrete structures has been mainly carried out using the Finite
Element Method (FEM). However, the FEM assumes that elements are connected by nodes and in most of
FEM codes, these nodes are not permitted to separate during the analysis. Moreover, separation of elements
at node location results in stress singularity at the crack location. The FE analysis is appropriate especially
before the generation of extensive cracking. On the other hand, many techniques were developed to deal
with cracks. These techniques, such as Smeared Crack approach”, assume that no separation occurs between
elements. The effects of cracking are only considered on the element stiffness matrix. Therefore, it is
difficult to follow the crack propagation using smeared crack approach. This makes the prediction of the
crack initiation, crack location, and crack width or length difficult. Moreover, the use of relatively large-
sized elements makes this prediction of cracking properties difficult. While, Discrete Crack Methods”
assume that the location of cracks and direction of crack propagation are predefined .

Many other methods were developed to deal with these problems. The Rigid Block and Spring
Method, RBSM?, is one of them. The main advantage of this method is that it simulates the cracking
process with relatively simple technique compared with the FEM, while the main disadvantages is that crack
propagation depends mainly on the element shape, size and arrangement. Spring stiffness is not calculated
accurately so that the calculated displacements were not of reliable accuracy. Each element cannot behave
as one body independent from surrounding elements. Thus the RBSM can be applied only to predict failure
load.

One of the recent methods to deal with fracture analysis of concrete is the Modified or Extended
Distinct Element Method (MDEM or EDEM)”. This method can follow the highly non-linear geometric
changes of the structure during failure, however, the main disadvantages of this method are that in some
cases accuracy is not enough for quantitative discussion and it needs relatively long CPU time compared
with the FEM.
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The proposed method assumes that the region studied is an assembly of virtually divided small
blocks. These blocks are connected by distributed springs in normal and tangential directions. The
formulations for spring stiffness and spring failure conditions were developed so that the springs
surrounding the element totally represent the block deformations and failure. Although simple material
models and failure criteria were incorporated, the highly non-linear behavior, i.e. crack initiation and crack
propagation of the studied problems could be followed with high accuracy till reaching global failure of the
structure.

ELEMENT FORMULATION

The two elements shown in Figure (1) are assumed to be connectéed by normal and shear springs at
one contact point. In the 2-dimensional model, three degrees of freedom are considered for each element
and deformations are assumed to be small. This leads to a relatively small stiffness matrix which is only of
size (6X6). Stiffness matrix is developed for an arbitrary contact point with one pair of normal and shear
springs as shown in Figure (1). It should be noted that the total stiffness matrix is determined by summing
the stiffness matrices of individual spring around each element. Consequently, the developed stiffness
matrix is an average stiffness matrix for the element according to the stress situation around the element.
Failure of springs is modeled by assuming zero stiffness for the spring being considered. Equation (1) shows
the upper-left quarter of stiffness matrix. In this formulation, the element stiffness matrix depends on the
contact point location (distance L and the angles 6 and a) and the stiffness of normal and shear springs
which are determined according to the stress and strain situations at the contact point location.
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DETERMINATION OF SPRING STIFFNESS

In this analysis, it is assumed that each normal and shear spring stiffness represents a certain area of
the connected blocks. Figure (2) shows the location of springs around one edge of the element. The spring
stiffness is calculated simply by Equation (2)

* q * * d*
Kn=EdT =GdT

and K 2)

where, d is the distance between springs, T is the thickness of the element and “a” is the length of the
representative area, E and G are the Young’s and shear modulus of concrete, respectively. For steel springs,
the term (d*T) is replaced by the area of the steel bar while E and G are the Young’s and shear modulus of
steel, respectively.

NUMERICAL ANALYSIS PROCEDURE
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MATERIAL MODELING Fig. (3) Flow of analysis

Material models used for concrete are shown in Figure (4). For the tension model, Young’s modulus
is assumed constant till failure of springs occurs (Figure (4-a)). For the compression model, a parabolic
stress-strain relation is adopted (Figure (4-b)). After reaching the peak stress, the Young’s modulus is
assumed to be zero to avoid negative stiffness. For the shear model, shear modulus is assumed constant till
reaching the cracking point. After cracking, the shear stiffness is assumed to be zero at the location of failed
springs in tension (Figure (4-c)).

As for steel, the tension and compression models are assumed to be bilinear. When steel stress
reaches yield stress, Young’s modulus is assumed to be 1% of its original value. After the assemblage of the
global stiffness matrix, the displacements of the elements are determined using the following well-known
formula

[Ke Y]~ [F] ©

Where [Kg] is the global stiffness matrix, [U] is the unknown displacement vector and [F] is the global load
vector. After the determination of displacements, the strains are calculated by determining the new relative
displacement between the ends of the springs.
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One of the main problems accompanying the use of blocks

for representation of reinforced concrete is the modeling of d

diagonal cracking. The assumption that the cracks are allowed to

propagate along the element edges only increases the stiffness of

the structure in nonlinear conditions. To overcome this problem, /
the following technique is used. It mainly depends on way of Contact point

determination of the principal stresses at the contact point.
Referring to Figure (5), the shear and normal stress components (T

and o) at point (A) are determined from the normal and shear 68 i
springs attached at the contact point location. The secondary stress a
(0,) was calculated from normal stresses in points (B) and (C), as
shown in Figure (5). Therefore, Fig. (5) Principal stress determination
at contact points
d (a- d) "
o2=7 dog+ 4)

Hereafter, the principal tension is calculated:

oo (252 (252 6

This value of principal stress, oy, is compared with the tension resistance of concrete. When o, exceeds the
critical value of tension resistance, the normal and shear spring forces are redistributed in the next load
increment by applying the shear and normal spring forces in the reverse direction. These redistributed forces
are transferred to the element centroid as a force and moment, and then these redistributed forces are applied
to the structure in the next load increment. The redistribution of spring forces at the crack location is very
important for following the proper crack propagation. For the normal spring, the whole force value is
redistributed to have zero tension stress at the crack faces. Although shear springs at the location of tension
cracking might have some resistance after cracking due to the effect of friction and interlocking of
aggregates at the crack faces, the shear stiffness is assumed zero after crack occurrence. Having any shear
resistance at the crack face reduces the tendency of the crack to open in further load increments because of
the rigid body motion of the attached elements. To consider the effect of friction and aggregate interlocking,
a redistributed value (RV), shown in Figure (4-c), is adopted.
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SIMULATION OF THE EFFECTS OF ELEMENT SIZE
AND THE NUMBER OF SPRINGS

Adjustment of element size in the analysis is very important. Simulation of structures using
elements of large size leads to increasing the structure stiffness and failure resistance of the structure. This
means that the calculated displacements become smaller and the failure load gets to be larger than the actual
one. To make this effect clear, we carried out a series of simulations using the laterally loaded cantilever
shown in Figure (6). All material properties were taken constant and elastic analysis was performed using
the proposed method. The results were compared with the theoretical results of elastic structure. The
percentage of error in maximum displacement and the CPU time (CPU: DEC ALPHA 300 MHz) are also
shown in Figure (6). To discuss the effect of the number of connecting springs, the analyses wete performed
using two models with 20 and 10 springs connecting each pair of adjacent element faces for each case of
different element size. From the figure, it is evident that increasing the number of base elements leads to
decreasing the error but increasing the CPU time. Use of only one element at the base leads to about 30%
error in the theoretically calculated displacement. This error reduces to less than 1% when the number of
elements at the base increase to 5. However, the CPU time increases rapidly. When we compare the results
using 20 and 10 springs, although the accuracy of the results of 10 springs model is same as that in case of
10 springs, the CPU time in case of 10 springs is almost half of that in case of 20 springs. It should be
emphasized that using rigid elements, calculated displacements become smaller than the actual
displacements when the size of element is not small enough. From this figure, it can be concluded that usage
of large number of elements together with relatively few number of connecting springs leads to very high
accuracy in reasonable analysis time. To improve the accuracy in case of elastic analysis, it is advisable to
increase the number of elements rather than increasing the number of connecting springs.

It should be also noted that in the previous analysis using rigid elements, like RBSM?, the results
obtained were of poor accuracy. This may be due to:

* The spring stiffness not being determined in a proper way to simulate the element deformation,

¢ The use of relatively large sized elements, and

* The use of relatively small number of springs between edges which leads to an inaccurate failure
mechanism.

The number of springs per face is also an important parameter. Although the effect of number of
springs in the elastic analysis is not large, its effect in non-linear analysis, especially after the generation of
cracks, becomes larger. This effect will be discussed in next section.
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SIiVIULATION OF TWO-STORIED RC WALL STRUCTURE
SUBJECTED TO MONOTONIC LOADING

To verify the accuracy of the model, the simulation results are compared with the experimental
results of a two-storied RC wall. The shape of the wall, reinforcement and loading location are shown in
Figure (7). Reference (4) gives more details on the columns, beams and wall reinforcement, or the material
properties. The wall is modeled using 1,845 square elements. The number of springs between each two
adjacent faces is 10. Reinforcement locations are defined by their nearest spring coordinates. For vertical
reinforcement, x-coordinate is defined at the steel bar location while for horizontal reinforcement, y-
coordinate is defined.

Figure (7) shows a comparison between measured and calculated load-rotation relations. First, to
discuss the effects of load increment in failure analysis, three models of different load increments, calculated
by dividing the estimated failure load by 50, 250 and 500, with the constant number (10) of springs were
used. Next, to study the effects of the number of connecting springs between faces, additional simulations
were carried out using the case of 250 load increments with 5 and 2 springs between faces and the results
were compared with that with 10 springs. The failure load calculated in all cases were within the range from
64 to 70 tf while the measured one was 67 tf. The calculated failure load using the FEM was 64 tf". In
general, the calculated failure loads are very close to the measured ones. The results of 50, 250 and 500
increments are almost congruent till at least 90% of failure load. It should be emphasized that the CPU time
of analysis of 500 increments is 10 times that of 50 increments. To avoid long CPU time, load increments
can be reduced after about 90% of expected failure load. Moreover, it can be noticed easily from Figure (7)
that the agreement between experimental and numerical results is fairly good for 250 increments with 10 or
5 connecting springs. Surprisingly, for the case of 250 increments with only 2 springs connecting each two
adjacent faces, the results are also reliable till reaching failure of the structure. It is noted also that using few
number of load increments leads to the results in slightly higher failure load (70 tf) while using a few
number of connecting springs gives slightly lower one (64 tf). This means that our model gives reliable
results even when using a few number of connecting springs or few number of load increments.

Although increasing the number of springs leads to increasing the CPU time required for assembling
the global stiffness matrix, the time required for the solution of equations, which is dominant when the
number of elements is large, does not change because the number of degrees of freedom is independent of
the number of springs used. This means that we can use larger number of springs between edges without
significant change of the CPU time of analysis. On the other hand, as the total number of connecting springs
used is generally large, it is necessary to use automatic mesh and spring generation. Moreover, increasing
the number of springs leads to increasing the computer memory capacity required.

Figure (8) shows the relation between load and the number of failed springs for each increment.
Cumulative curves also show the total number of failed springs till that increment. It can be noted that
although the number of increments in both cases are different, both cumulative curves close each other. This
gives good indication that the solution is generally stable. Excessive cracking begins to appear when the
applied load is about 28 tf. At the same load, behavior of the structure begins to be highly nonlinear.

Figure (9) shows the deformed shape during the application of load in case of 500 load increments
with 10 springs. The location of cracks and crack propagation can be easily observed. The location of
cracks and crack propagation are very similar to those obtained from the experiment. This means that the
proposed model can be applied for fracture behavior of RC structures, such as, failure load, deformations,
crack generation, crack location and crack propagation, etc.

It should be emphasized that although the shape of elements used in the analysis are squares, it does
not affect the crack generation or crack propagation in the material. Diagonal cracks, as shown in Figure (9),
coincide well with those obtained from the experiment. In analysis using rigid elements, like RBSM?,
shapes and distributions of elements were decided based on the assumption that cracks were generated and
propagated in previously expected locations and directions.
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Fig. (8) Relation between load and the number of failed springs for 2-storied RC wall
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Dimensions, loading conditions and

reinforcement details® are shown in Figure (10). This frame is modeled using 1880 elements with 10
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Fig, (9) Deformed shape and crack locations of the 2-storied RC wall structure

(in case of 500 increments with 10 springs between each two adjacent faces, Simulation Scale Factor=30)
Good agreement between the measured and calculated crack locations, crack inclination and

crack length can also be obtained. In both experiment and numerical simulation, failure occurs near the base

The third verification example is an RC frame structure.
and at connections.

measured from the experiment. It can be noticed that excellent agreement between the two results has been

Figure (10) shows also the relation between load and deformation calculated from our simulation and
achieved. Figure (11) shows the deformed shape and crack location at the final stage of our result and

connecting springs. The maximum load is applied in 200 increments at the shown location. It should be
noted also that all reinforcement details, including stirrups location and diameters, were taken into account.

SIMULATION OF RC FRAME STRUCTURE

experiment.
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SIMULATION OF RC DEEP BEAMS WITHOUT SHEAR REINFORCEMENT BARS

In this section, simulation results of two deep beams” which do not have shear reinforcement in the
shear zone are introduced. This type of analysis is generally difficult because of excessive cracking which
occurs during loading. The results obtained through our model are compared with the experimental results
and FEM results as shown in Figures (12) and (13). The shape, loading conditions, reinforcement and
deformed shape are also shown in these figures. In general, the results of the proposed model are more
accurate than those obtained with the FEM. The accuracy of the FEM decreases and finally becomes
impossible to apply the FEM when the ratio between shear zone length and the total beam length increases.
The reason is simply because no reinforcement is used in the shear zone and hence, the sensitivity of the
concrete to cracking increases. This effect can not be accurately followed using the FEM.
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MATERIAL MODELING FOR CYCLIC LOADING

For concrete springs subjected to cyclic loading, Maekawa’s compression model® shown in Figure
14(a) is adopted to simulate cyclic stress-strain relation. On the other hand, for reinforcement, the steel
model shown in Figure 14(b) is used”. The main advantage of these models are that they incorporate only
one equation for the simulation of behavior in loading, unloading, reloading and post peak behaviors.
Stress-strain relation for concrete springs subjected to tension is assumed linear till reaching the cracking
point and then the stiffness is assumed zero.

Stress Tension
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Compression

Strain
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Tension .
G Compression

(a) Concrete (b) Steel
Fig. (14) Material models for steel and concrete

SIMULATION OF TWO-STORIED RC WALL STRUCTURE
SUBJECTED TO CYCLIC LOADING

To verify the accuracy of the model under cyclic loading, the simulation results are compared with
the experimental results of the two-storied RC wall structure in cyclic loading conditions. The applied
cyclic load is shown in Figure (15). The wall shape, reinforcement and loading point were shown in Figure
(7). Figure (16) shows the number of failed springs during loading. It is obvious that this number always
has a peak when the applied load is maximum and then decreases in the unloading stage. Figure (17) shows
the relation between load and angle of rotation (8) during the loading. It seems from the relation shown in
Figure (17) that the value of plastic strain and unloading behavior are not so accurate because of element
dislocations during loading process. This leads to incomplete cracking closure and hence the unloading
stiffness becomes less than the measured one. Figure (18) shows the stress-strain relation for steel bars
located at point “A”. It can be noticed that the value of tensile strain is larger than that of compressive
strains. The reason is crack closure in compression. It should be emphasized that it is very easy to follow all
reinforcement details and any stress-strain relation at any point for the studied structure. With the FEM, it is
practically impossible to follow all reinforcement details in the analysis. Figure (19) shows the deformed
shape and crack locations in the specimen. It is clear that the crack locations are very near to those from the
experiment. The generated cracks open and close in such a way which is similar to what happens in the
experiment. These cracks are generated without use of any special techniques, such as joint elements in
FEM, and without assuming the crack location and direction of propagation before the analysis.
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In addition, all reinforcement details, such as bar location and shear reinforcement
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Through numerical simulations of reinforced concrete structures, it is confirmed that the new
details, can be taken into account without any additional complications to the analysis. Also, it is very easy

Fig. (19) Deformed shape and crack location at different loading stages (Simulation Scale Factor=30)
proposed model is capable of simulating the fracture behavior of concrete structures. The results of load and
deformations, crack initiation and propagation of cracks can be calculated with high accuracy and relatively

the FE analysis. This method does not require any complicated models for the representation of cracking or
special elements, such as joint elements, to follow the crack propagation, the results obtained by the

displacements in monotonic loading almost coincide with the experimental results by at least 95% accuracy.
The expected failure mode is also very close to the measured one. Through this new model, stresses, strains,
to follow the mechanical behavior of steel and concrete at any point. Although the shape of the element
used was square, it did not affect the crack propagation in the material. Even though the formulations used
for the material properties were relatively simple, the results obtained are better or of the same accuracy of
proposed method in monotonic loading condition agree well with experimental results. However, for cyclic

simple techniques.

CONCLUSIONS



loading, further research may improve the accuracy of unloading behavior. This model can be easily
combined with the EDEM to simulate the total behavior of structure till complete failure. The proposed
model is expected to give high accuracy to wide applications where FEM does not give reliable accuracy.
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