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A SIMPLIFIED EVALUATION METHOD OF DYNAMIC INTERACTION
BETWEEN CLOSELY SPACED EMBEDDED FOUNDATIONS OF
ARBITRARY SHAPES

by
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ABSTRACT

A simplified method for the evaluation of dynamic interaction between closely spaced
embedded foundations of arbitrary shapes is presented. In the method, these foundations are
assumed to be rock situated on a non-deformable base. The overlying soil stratum surrounding
these embedded foundations is replaced by an infinitely spread two-dimensional plane resting
on Winkler-type springs. These springs take into account the fundamental shear vibration
mode of the stratum. In addition, this model approximates stress-free ground surface
conditions by assuming a plane-stress condition over the entire extent of the plane. Given
these assumptions, the stiffness of the lateral soil at the sides of the foundations computed using
the model was found to be in close agreement with results obtained by more rigorous means.

INTRODUCTION

Many embedded structures are closely
spaced to each other in urban areas. Although
the effect of cross interaction between
embedded structures is not negligible, the
effect has not yet been incorporated into
seismic design codes.

Kobori and Kusakabe" analyzed the
dynamic  cross-interaction between two
embedded structures by using the so-called
“Thin Layered Element Method.””” In this
method, models of soil-structures were
subdivided by several horizontal planes. The
formulation was obtained by making use of the
closed-form solution, based on exact displacement functions in the horizontal direction, and the
finite element method in the vertical direction for the coupling of these layers. To analyze the
dynamic cross-interaction between embedded foundations, they employed a method developed
by J E.Luco®. Luco analyzed this problem by employing two cylindrical coordinate systems

Fig.1 Closely Spaced Embedded Foundations
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so that the boundary condition between soil and structure is satisfied. Lin et al.” developed a
hybrid method in which two rigid embedded foundations with rectangular cross sections were
considered. The soil-foundation system is partitioned into a finite region, the near field, and
the complementary infinite region, the far field, which is assumed to be horizontally layered.

The thin layered element method provides us with a semi-analytical solution which is
considered to be very reliable if a stratum situated on a non-deformable base can be subdivided
into horizontal layers of constant thickness. On the other hand, it is mathematically difficult to
incorporate non-linearity of soil, spatial variation of soil-profiles, and embedded foundations of
arbitrary shapes into the model.

Discretized methods, like the finite element method, are very widely used as
multipurpose tools. However, these methods do not always aid in physical understanding of
the dynamic soil-structure interaction. Also these numerically sophisticated methods do not
always lead to reliable results because it is usually impossible to know all of the input soil
parameters. Therefore, a rational simplified model which harmonizes the sophistication of the
analytical model with the accuracy of available soil input parameters may be preferable.

In the present paper, a simple ground model is used to evaluate the dynamic cross
interaction between two embedded rigid foundations of arbitrary shapes. The “Quasi-Three-
Dimensional Ground Model” was originally developed by Tamura et al.® for earthquake
response analysis of overlying stratum on an uneven rigid base. In the model, vertical motion
of the ground is eliminated and the vibration mode of the surface layer is assumed to be the
fundamental shear vibration mode. The latter assumption is endorsed by Kobori and
Kusakabe’s study which shows that the effect of cross interaction dominates at around the
natural frequency of the surface layer. Given these assumptions, the stiffness of the lateral soil
computed using the model is compared with results obtained by more rigorous means.

SIMPLIFICATION OF THE MODEL

Neglecting vertical motion in a soil-
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the contribution of the 1st vibration mode to the stiffness dominates. The reason for this is
that all vibration modes except the 1st vibration mode have mutual positive and negative



components of depth. Therefore, the reaction moment by those modes around the rocking axis
become negligible after the positive and negative components cancel each other out.
Consequently, the model can be simplified by considering only the fundamental vibration mode.

QUASI-THREE-DIMENSIONAL MODEL

(a) Surface layer on a non-deformable base

(b) 2-D expanse on Winkler-type springs

Fig.3 Quasi-Three-Dimensional Ground

Model
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To model a soft surface layer
overlying a non-deformable base, the soft
surface soil deposit is divided into vertical soil
columns(Fig.3(a)). Then, each soil column is
replaced by a one-lumped-mass-spring system
taking into account the fundamental mode of
shear vibration for the column. A net of finite
elements is used to link these oscillators
together, thus forming a model of the alluvial
surface layer (Fig.3(b)).

(1) Governing equation

Applying a cylindrical coordinate
system to the model, the governing equation
becomes:
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where, A, g identify Lamé’s constant, p* identifies density of elastic ground, ¢ identifies

viscous constant, k* identifies spring constant, @ identifies the circular frequency of the
excitation and (u,,u,) identify the displacement in the (r,8) direction, respectively.

These parameters are computed as follows taking only the fundamental shear vibration
That is, the vibration mode of the depth of the surface stratum is assumed

mode into account.

to be
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a, : Contribution of the 1st mode to the rigorous vibration mode
¢, fundamental shear vibration mode

Thus, the parameters of the present model are computed from these equations.
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(2) Incorporation of vertical motion

Neglecting vertical motion does not satisfy the stress-free condition at the
ground surface. This assumption may leads to an overestimation of the stiffness. Therefore,
if the surface layer is soft ground, the effect of the stress-free condition at the surface must be
somehow incorporated in the analysis. The ratio between longitudinal and shear wave is
expressed as

Ve 2(1-v)
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where, V,,V,: Longitudinal and shear wave
velocity, respectively and v: Poisson’s ratio
As Poisson’s ratio approaches 0.5, the wave
velocity ratio climbs toward infinity. When
this occurs, the value for stiffness obtained
ceases to be acceptable. Accordingly, we
need to modify the value. Suggestions made
by Gazetas et al.”’ leads to replacing the wave
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This replacement was also adopted by Veletsos
et al.® in their study. Then, the value of the
wave velocity ratio settles down to 2 when
Poisson’s ratio approaches 0.5. Konagai et
al.® experimentally showed that the ratio

Photo.1 Visualization of wave propagation
from an embedded foundation at the surface
of the ground model by means of moiré
technique (The arrow indicates the excitation
direction of the foundation.)




becomes approximately two at the surface of the model ground when Poisson’s ratio is 0.5
(Photo.1).

To neglect vertical motion corresponds to a plane-strain condition for the model. A
plane-stress condition is another extreme condition which considers a stress-free condition at
the surface. Then,

0,=7,=7T,=0 .. (13)
This assumption corresponds to a plane-stress condition in the Quasi-Three-Dimensional
Model.
Plane-strain solutions can be transformed into plane-stress solutions only by changing Lame’s
constant A in the plane-strain formulation to A".
where,
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DYNAMIC INTERACTION BETWEEN CLOSELY SPACED FOUNDATIONS

The present section is devoted to applying the Quasi-Three-Dimensional Model to
evaluate the cross interaction between two embedded structures. A local cylindrical coordinate
system is set up and the partial differential equation is solved with the boundary condition
between the structure and the ground.

(1) Solution of the Governing equation
To apply the present model to the

cross  interaction  problem,  partial
differential equation (1), (2) is solved.
Potential functions are defined by
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Substituting equation(15), (16) into (1), (2),
the following equations are obtained.

A+2) V2= (-p 0? +iax" +x )¢
,u*sz// = (—p*a)2 +iac" +K‘*)l//
. (17), (18)
Here,

I 19 1
Vie ot o—t——"— ... (19
or* ror r*oe? (19)
Fig4 Soil-Structure System Condsidered
2r,: Diameter for circular cross section Potential functions ¢ andy are assumed to

2 L : Width for rectangular cross section
be separable.



¢ =R(r)O(8) ... (20)

w=R'(nO®'@) . (2D
Then, equation(17) yields two ordinary linear differential equations, namely,
[%;+%%-{(“’;§2)+7_:}]R(r)=o . (22)
éj;? =m® | .. (23)
Here, .
& =1—ipc*w—;fw—2 . (24)

Its general solution is
R=A, . K.(gr)+ A, 1,(qr)

O=A,, sin(mb)+ A, cos(mb) ... (25), (26)
&)
where, g+ (——) =0 . 27)
Ve
For outward traveling waves, the potential function decays with horizontal distance
and the term I, must vanish. Then the potential function ¢ is obtained. The  other

function y is also obtained following a similar procedures.
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Finally, we can obtain the displacement in the (r,6) direction.
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(2) Dynamic stiffness of the soil
Normal and shear stresses were obtained from Hooke’s law as follows:
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Thus, soil reaction force against the movement of the foundatios is obtained by integrating the
stress along the edge of the foundation.
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Soil spring for the horizontal motion is defined as

b

x

Then, soil spring for the rocking motion can be defined as follows, ignoring the shear force at
the lateral surface of the foundation.
K,=K, -H* ... (46)

The boundary condition for another foundation is considered by changing the coordinate

system.
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These foundations vibrate in the X direction or in the Y direction, in phase or out of phase.
Namely, there are four kinds of vibration pattern and the stiffness of the soil is obtained for each.



(3) Effect of the shapes

If the shape of the cross section of the foundation is circular, arbitrary constants can be
accurately determined. But if the foundation has an arbitrary shape, for example, rectangular,
these constants require that higher order Bessel functions approximate solutions with a
sufficient degree of accuracy. Therefore, Bessel functions up to the 11th order were
considered and the error was kept to within several percentage points.

RESULTS OF THE ANALYSIS

In this section, the dynamic stiffness computed by the present model is compared with
the rigorous solution which treats the vibration mode of depth accurately.

(1) Results for the circular cross section

Dynamic stiffness of the ground for the rocking motion of the foundation computed by
the present method and by the rigorous method is shown in Fig.5 in the frequency domain. In
the rigorous method, up to 9th order trigonometric series were considered for the vibration
mode of depth. The real portion of the result is slightly overestimated when compared with
results obtained by the rigorous method. However, the imaginary portion shows perfect
agreement with the rigorous one. The difference between the results obtained by the present
method and by the rigorous method increases as the frequency increases. This means that the
fundamental shear mode is the predominant factor for estimating stiffness, especially in the
lower frequency range.

(2) Result for the rectangular cross section

As applied to an example of arbitrary shape, a square-shaped cross section is
considered.  Stiffness is shown in Fig.6 for four vibration patterns compared with those results
obtained by the rigorous method. The results obtained by the present method is 10-20 percent
smaller than the results obtained by the rigorous method for the real portion, however, the
imaginary portion is in almost perfect agreement with results obtained by using the rigorous
method.
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Fig.5 Dynamic-stiffness versus frequency factor
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CONCLUSIONS

Simplified evaluation method of dynamic cross-interaction between two foundations of
arbitrary shapes was discussed. To evaluate the method, several assumptions were made,
namely, neglecting vertical motion, and using only the fundamental shear vibration mode of
depth. The effect of a stress-free condition at the surface was considered by assuming the
plain-stress condition for the surface layer. Circular and square cross section shapes were
taken into consideration. Given these assumptions, dynamic stiffness was evaluated. The
results showed good agreement with the rigorous solution. Therefore, it should be relatively
easy to incorporate complicated effects such as spatial variation of soil profiles and the non-
linearity of the soil in future studies.
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