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ABSTRACT

The finite beam element with the use of the adaptively shifted integration (ASI) tech-
nique is suitable for elastic-plastic analyses of framed structures, because a plastic hinge can
be set at an appropriate position. In this paper the ASI technique is applied to a degenerated
Timoshenko beam element that is generally used. The developed element is applied to the
analyses of the steel damper for base isolation systems of large scale buildings.

1. INTRODUCTION

In elastic-plastic analyses of framed structures the evaluation of appropriate positions of
plastic hinges is essential. However, a position of a plastic hinge is restricted in conventjonal
finite element method (FEM) since stresses are evaluated at limited number of integration
points. On the other hand, with the use of the adaptively shifted integration (ASI) technique,
which is developed by Toi, one of authors, and his associates, a plastic hinge can be located at
an arbitrary position. Also the technique can be easily implemented by slightly modifying
conventional codes of FEM.

Although the ASI technique could be applied to both cubic Euler element and linear
Timoshenko element, the latter is only treated in this paper. The original linear Timoshenko
beam element based on the ASI technique was described by using stress resultants and general
strains“’s), The ASI technique was also applied to a two dimensional layered beam element”.
The layered element was used for the analyses of the crack propagation in framed structures
made of brittle materials. Appropriate positions of cracks could be represented with the use of
the ASI technique.

In this paper the ASI technique is applied to a three dimensional degenerated Timoshenko
beam element with linear interpolation function. A feature of degenerated elements is that the
development of a plastic region in a section can be represented since the element is similar to
solid elements except for interpolation functions in which assumptions of the beam theory are
introduced. Another feature is the element can easily be extent to the geometrically nonlinear
element since nonlinear continuum mechanics can be directly applied.

The presented element is applied to elastic-plastic analyses of a cantilever and a steel damper
for base isolation systems. The shape of the damper is like a coil of spring, and damping effect
can be obtained due to the consumption of seismic energy by the plastic deformation®®. Both
infinitesimal displacement analyses and geometrically nonlinear analyses based on the total
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Lagrangian formulation are carried out by using the presented element.

2. ADEGENERATED LINEAR TIMOSHENKO BEAM ELEMENT BASED
ON ASI TECHNIQUE

2.1 DEGENERATED TIMOSHENKO BEAM ELEMENT

Fig. 1 shows the degenerated Timoshenko beam element presented by Bathe!! and devel-
oped by Dvorkin' to which the ASI technique is applied in this paper. The displacement field
of the element is following the assumptions of Timoshenko beam theory. Those are (1) a
straight line normal to the beam axis of initial configuration remains straight during the defor-
mation, but not necessarily normal to the deformed axis, (2) the cross section of the beam is
not deformed. Under these assumptions moderately thick beams can be treated since shear
deformations are taken into account.

The ASI technique can be applied when the linear interpolation functions following the
above-mentioned assumptions is employed with one-point quadrature. A position vector of a
material point and a displacement vector can be represented as follows.
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Although dimensions of the section at two nodes can be different in general, they must be
constant when the ASI technique is applied (see the proof in Ref. [4]).

The total Lagrangian formulation is adopted for describing the geometrical nonlinearity.
Following the formulations proposed by Dvorkin®), finite rotations of directors v; and v; are
taken into account when the directors are updated, and the tangent stiffness matrix which is
consistent with the finite rotation is used.

When the element with circular section is treated, parameters (r,p) in polar coordinate
system are mapped to parameters (s,,s,) in natural coordinate system as shown in Fig. 2. For
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Fig. 1 Degenerated beam element Fig. 2 A circular cross section



the numerical integration the trapezoidal rule is employed in circumferential direction and
Simpson's rule in radial direction. Numerical experiments of elastic cantilevers with infini-
tesimal displacement show that three integration points in each direction are sufficient when
a moment, a torsional moment or an axial load is applied independently. More integration
points are needed in elastic-plastic analysis. In the latter examples cross sections are circular
and the number of integration points in the radial direction is seven, and in the circumferential
direction it is sixteen. The number of total integration points in a section is 112.

2.2 ELASTIC-PLASTIC CONSTITUTIVE EQUATIONS

When large displacements and rotations but small strain are assumed, constitutive equa-
tions for infinitesimal deformation can be employed for describing a relation between Green-
Lagrange strain tensor and the 2nd Piola-Kirchhoff tensor, since these two tensors are invari-
ant under rigid body rotations!I.. In the following equations stresses and strains are repre-
sented by the components of the 2nd Piola-Kirchhoff stress tensor, and that of Green-Lagrange
strain tensor respectively. The total Lagrangian formulation is employed.

The elastic-plastic relation is introduced only in axial direction, and shear deformation is
assumed to be elastic. A bilinear model considering kinematic hardening is employed for the
relation in the axial direction such as
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where ‘o, is the stress at time ¢, g is Young's modulus, g is the strain hardening parameter,
Ag,, is an increment of the strain and g, is the yield stress at time ¢. Eq. (4) can be rewritten
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where +& 57 is the elastic predictor of stress “**g, . If | is smaller than ['o,,,|, unloading
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2.3 OVERVIEW OF THE ASI TECHNIQUE

Toi, one of authors, showed the equivalence of approximated strain energy between the
linear Timoshenko beam element using one-point (reduced) integration and the one dimen-
sional Rigid Bodies-Spring Model (RBSM) considering the effect of lateral shear deforma-
tions. The condition of the equivalence is that the integration point of the beam element and
the connecting point of corresponding RBSM are symmetrically placed at equal distances
from the center of the element.

The equivalence means a linear Timoshenko element can be the RBSM whose connecting
point is at an arbitrary position by simply shifting the integration point. Therefore a plastic
hinge, which is represented by a plastic rotational spring of the RBSM, can be located at an
arbitrary position in the beam element.

A deficiency of the beam element with a shifted integration point is the accuracy of elastic
solutions become worse. The most accurate elastic solution is obtained when the integration
point is at the center. For overcoming the deficiency Toi and Isobe presented adaptively shifted
integration (ASI) technique. In the ASI technique a position of an integration point is adaptively
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shifted when plastic deformation occurs, but it remains at the center in elastic deformation.

In geometrically nonlinear cases the RBSM and Timoshenko beam element with a shifted
integration point may not be equivalent, especially when the deformation become large. How-
ever the same procedure of shifting is employed in this paper. The numerical experiments with
a cantilever, which is presented in the next section, show the element with ASI technique
behaves well when displacement and rotation are moderately large.

2.4 APPLICATION OF THE ASI TECHNIQUE TO DEGENERATED BEAM ELEMENT
2.4.1 Overview

The above-mentioned ASI technique can be applied to the degenerated Timoshenko beam
element shown in the section 2.1. The original Dvorkin’s element will be called a “conven-
tional” element in this paper. The essential points in the application are (1) the method for the
extrapolation of stresses at points other than integration points, and (2) the condition for
adaptively shifting.

Note that in the degenerated element several quadrature points exist in a section and these
points should be shifted simultaneously. This procedure is called "the shifting of the integra-
tion points" in this section. Also note that, as mentioned in section 2.3, the stresses recovered
at the shifted integration points are really the stresses evaluated at the opposite side of the



element.

2.4.2 Extrapolation of Stresses

When ASI technique is applied, the stresses at the points other than integration points
should be computed for the evaluation of an appropriate position of a plastic hinge. However,
such stresses cannot be directly recovered in the linear Timoshenko beam element since stresses
are evaluated by the one-point integration. In the presented element the stresses are computed
from the bending moments extrapolated by using shear stress resultants (see ref. [5]). For
example a bending moment around a director V] can be extrapolated as follows.

M,= Mgz + Qlel’ (6)

where M,, is the bending moment calculated from axial stresses at the integration points, M,
is the bending moment at the distance ; from the integration points and Q,, is the shear stress
resultant. The parameter of length ; is positive when the position of the extrapolated moment
is placed in the right-hand of the integration points.

The stresses in the axial direction are computed by using eq. (6). By adding contributions of
the bending moment around the director V and the axial stress resultant, which is the product
of the sectional area 4 and the axial stress at the neutral axis of the integration position, the
axial stress is evaluated as
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where o, is the extrapolated axial stress at (s,,s,), Opy is the axial stress at the integration
point placed at (s,,5;), Tugi, and 7,4, are the shear stresses at the neutral axis of the integra-
tion station (the shear stresses that contribute to a torsional stress resultant can be excluded
when the shear stress at the neutral axis is employed) and I, and I; are moments of inertia in
two directions.

Eq. (7) should not be applied when the element is plastic. However, since in the presented
scheme (described in the next subsection) the shifting is carried out before yielding occurs and
just after all points in the element are unloaded, eq. (7) may be appropriate. '

2.4.3 Conditions for the Shifting.

Determining when a plastic hinge takes place is not easy in the degenerated beam element,
since material points in a section do not become plastic simultaneously. The following condi-
tions for the shifting are used.

(1) The integration points can only be placed at three cross sections along the element. Those
are the sections at the center, the left node and the right node. ‘

(2) The integration points in a section are shifted simultaneously and they are always placed
in a same Section.

(3) Once the shifting is carried out the integration points are not shifted until all points in the



element are unloaded.

(4) The integration points are placed at the position where the number of yielded integration
points is the largest. However, the yielded points at the surface are excluded in counting the
number, since elastic deformation dominates when only a surface region is yielded, and in that
case the plastic hinge should not be set.

(5) When a pure bending moment or an axial force is applied to a beam, it deforms homoge-
neously in the axial direction along the beam and the plastic hinge should not be set. Therefore
when the difference among the numbers of yielded points in the three cross sections is small,
the integration points are placed at the center.

(6) The shifting is carried out at the beginning of each incremental step before the stiffness
matrix is computed. In the iteration process based on the Newton-Raphson method the inte-
gration points are not shifted.

A problem of the presented scheme is, when strain hardening is taken into account, yield
stresses cannot be updated except for the integration points. If a plastic hinge occurs in differ-
ent positions in an element during a successive analysis, the problem could affect solutions.
In the following examples a yield stress corresponding to a position (s,,s,) assumed to be
constant in an element.

3. ELASTIC-PLASTIC ANALYSES OF A CANTILEVER

For showing the validity of the presented element, the analyses of a cantilever under a point
loading are carried out. Incremental displacement method is employed and the lateral dis-
placement at the tip is prescribed. Material properties and dimensions of the model are shown
in Table 1.

Results for two kinds of strain hardening parameter are shown in Fig. 5 and Fig. 6. Geo-
metrical nonlinearity is not considered in both cases. The load-displacement curves obtained
by using the conventional or the ASI technique with 1, 2, 4 or 40 elements are shown in each
figure and compared.

The slope of the curves changes gradually, since the development of plastic regions could
be represented by the degenerated beam element. When the model is subdivided into 40 ele-
ments the solutions obtained by two methods are almost the same, and they are considered to
be converged. In Fig. 5 the solutions with the use of ASI technique converge rapidly, and a
collapse load is evaluated even with one element model.

In Fig. 6, however, the results obtained by the ASI technique underestimate the collapse
load. This is due to the inaccuracy of the elastic solution using the element with shifted inte-
gration points, that means the increases of yield stresses are not evaluated properly. The re-
sults suggest that when large strain hardening parameters are used, the ASI technique should
not be applied,

Table 1 Dimensions and material properties of the cantilever

Length 200 cm

Diameter of a section Tem

Young's modulus E 2.1x106 Kgf/cm2
Strain hardening parameter H' E/2100 or E/80
Initial yield stress 3000 Kgf/cm2
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Fig. 7 shows the results when geometrical nonlinearity is taken into account. When the
lateral displacement is under about 50 cm (corresponding to the rotation of 15 degrees at the
fixed boundary) the models with ASI technique behave well, after that, however, a very over-
stiff solutions are obtained with the models. It is concluded that the presented element based
on the Dvorkin’s element could be applied to the cases with moderately large rotation.

4. ELASTIC-PLASTIC ANALYSES OF THE STEEL DAMPER FOR
BASE ISOLATION SYSTEMS

Photo 1 is an overview of the steel dampers. A Plan and an elevation of the damper are
shown in Fig. 8. As shown in Photo 1 four dampers are used for an isolating system, though
analyses are carried out for one damper. Material properties and dimensions of the model are
shown in Table 2. A small strain hardening parameter is employed. The displacement at the
upper boundary in X or Y (see Fig. 8) direction is prescribed incrementally, the rotation around
the Z axis at the upper boundary is set free, and the other degrees of freedom at the upper and
the lower boundaries are constrained.

Fig. 9 shows the results without considering geometrical nonlinearity. The model is subdi-
vided into 10 or 50 elements, and each model is analyzed by using the conventional and the
ASI technique. When the 50 elements model is used, the difference between two methods is
very little.

In 'Y direction, the obtained load-displacement curves are almost the same. The 10 elements
model is sufficient for this direction. In X direction, the solution of the 10 elements model
with ASI technique is almost identified with the solution of the 50 elements model when the
displacement is smaller than about 15 cm. Even when the larger displacement is prescribed,
although the solution underestimates the collapse load, it is better than that of conventional
method with 10 elements.

Fig. 10 shows the results with geometrical nonlinearity. The results of the linear analysis
with conventional 50 elements are also shown for comparison. In X direction the results al-
most coincide with the linear solutions. The behavior of the 10 elements model with the ASI
technique is better than the model with conventional method. In'Y direction, the hardening
due to geometrical nonlinearity occurs. The solution of the 10 elements model with the ASI
technique is better when the displacement is less than about 15 cm, but after that the solution
is worse than that of the conventional method. As shown in previous section, the over-stiff due
to the shifting may have occurred.

Table 2 Dimensions and material propertics of the steel damper

Radius 26.5 cm

Height 17.0 cm
Diameter of a section Tem

Young's modulus E 2.1x106 Kgf/cm2
Strain hardening parameter H' E/2100 or E/80
Initial yield stress 3000 Kgf/cm2




Photo 1 The steel damper for base
isolation systems

¥ H T T T
8000.0
7000.0 ﬁ//’”—ﬁ L..iiiiiiil
6000.0 [,_
%55000.0
2 oo |1
T 4000.0 -
g | i
) B ., Xdirec.
3000.0 SR K direc., AR
----- 50 el., Xdirec.
2000.0 50--et direc:;~ASt
,/ o 10 el., Ydirec.
1000.0 ——e—=10.el,.Y.direc.,.ASl
--8--50 el, Ydirec.
0.0 : | \--o--50 el, Ydirec., AS|,
0.0 5.0 10.0 15.0 20.0 25.0

Displacement (cm)
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5. CONCLUDING REMARKS

Adaptively shifted integration (ASI) technique is applied to the Dvorkin’s degenerated
Timoshenko beam element. Several basic equations for the application are shown, and 2 com-
putational scheme is presented. Elastic-Plastic analyses of a cantilever and a steel damper for
base isolating structures are carried out, and validity and restriction of the presented element
are evaluated. In geometrically nonlinear analyses the presented element can treat moderately
large rotations, however it should not apply to the problems with very large rotations.
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