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ABSTRACT

Many problems in earthquake engineering relate to the dynamic behavior of saturated porous
soil. Saturated porous soil is the material composed of solid and fluid phases, which manifests
obvious deforming and diffusing characteristics under dynamic loading. Thus, it is necessary to
take into account these characteristics in dealing with a porous soil-structure interaction
problem. In the present approach, the porous soil surrounding a foundation is sliced into a
number of elements taking into account various wave radiation patterns. The soil impedance
functions for various vibration modes are then well approximated by the syntheses of springs
and dashpots. The parameters of the models are thus dependent on the equivalent Poisson’s
ratio, but not on the excitement frequency at all. The equivalent Poisson’s ratio is the function
of the degree of saturation, permeability coefficient and porosity of the porous soil. From the
numerical examples, it is found possible for the equivalent Poisson’s ratio to be quite different
from the one obtained from the in-situ PS logging, depending on the permeability and porosity
of the soil.

INTRODUCTION

Modeling the unbounded soil is a key task in dealing with a soil-structure interaction problem. It
is not seldom that the soil is idealized as a continuous mono-phase material and the stiffness of
the soil supporting a structure is expressed as a complex function in the frequency-domain so
that the effect of wave dissipation into the unbounded soil can be taken into account. In reality,
however, soil consists of porous granular fabric partly-permeated or perfectly-saturated by
water. In many cases, the effect of the interaction between the solid and the fluid phase may not
be negligible. Furthermore, when the nonlinear feature of the porous soil surrounding an
embedded structure is discussed, the time-domain analysis seems to be preferable to the
frequency-domain one. Therefore, it is necessary to develop a time-domain approach to solve
the porous soil-structure interaction problems. This paper extends the time-domain study of
soil-structure interaction by Nogami and Konagai (1986, 1987, 1988) so that the solid-fluid
interaction within the porous soil can be rationally taken into account. Being based on Biot’s
theory and the plane strain wave propagation model, the impedance functions of a rigid disk
embedded in an infinite porous plane are derived. Since the analytical solutions are too
complicated to be directly transformed into time-domain expressions, the impedance functions
are expressed in terms of frequency-independent parameters. In the present approach, the model
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parameters are expressed as functions of equivalent Poisson’s ratio, that reflects the effect of the
bulk moduli of fluid and solid phases, permeability and porosity of soil. In numerical examples,
the present impedance functions are attached to an embedded upright Timoshenko-type beam,
which represents a flexural embedded body like a slender caisson or a pile group, and the time-
domain response analysis of the structure is conducted by taking porous soil profiles from Kobe
as examples.

POROUS SOIL-STRUCTURE INTERACTION FORCE IN TIME-DOMAIN

In cylindrical coordinate, the governing equations of a porous medium can be expressed into
three separate sets of partial differential equations, in terms of displacement potentials,
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where, ﬂ,*=/1(1+i(da)), ME=u(1+i(da)), A and u = Lame’s constants, da = hysteresis damping
ratio of solid phase, p=(1-n)p+npr= density of soil, p, = density of solid, pr= density of fluid,
n= porosity, p = atmospheric pressure, Q=1/(n(1/kr+(1-s)/p))= bulk modulus of fluid-gas
mixture, s = degree of saturation, kr= bulk modules of fluid, a=2/n-1= toruosity for spherical
shapes, showing mass coupling effect of phases, b=gnp/k= diffusive coefficient,
g=gravitational acceleration, k = permeability coefficient of soil, ¢ H; = the potentials of the
displacement of solid phase, ¥, G; = the potentials of the relative displacement between the

solid and fluid phases and V = gradient, respectively. The variations of ¢ y are associated with
volumetric wave propagation, whereas H;, G; show distortional wave propagation.

(1)

Finding the eigen values and eigen vectors of Eq.( 1 ) allows Eq.( 1 ) to be decoupled with
respect to both ¢, and . Substituting the boundary conditions in the equations of ¢ and ¥, and
after mathematical manipulation, the impedance functions of a rigid disk embedded in a plane
strain porous medium with an infinite extent are analytically available for various vibration
modes(Noorzad and Konagai, 1993). The impedance function for swaying motion is expressed
in the following form as:
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complex Bessel function of order m, 4;= the eigen values of Eq.( 1).
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The variation of stiffness ratio (ks/1) with respect to both the normalized frequency ao and the
permeability coefficient k is shown in Fig. 1. The real part of the stiffness is getting more and
more downward to the right as the permeability coefficient decreases, whereas the imaginary
part is affected little by the change in the permeability.
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Fig. 1 Variation of the stiffness of porous medium for swaying motion with dimensionless
frequency and permeability, the bulk modulus of solid phase D=2.0x] 0*tfim? and fluid phase
0= 2.0x10°tf/m?, the mass density of solid phase ps=2.6t/m3 and the coefficient of hysteresis
damping da=0.0

The impedance function for the rocking motion of a rigid disk is given as:

K,, = mur2(1+ da)(1 + a; 50—(61%1) (3)
K, (a})

Fig. 2 shows the variation of the rocking stiffness with respect to the normalized frequency and
the permeability coefficient. Differing from the case of horizontal motion, both the real and
imaginary parts vary slightly with the permeability coefficient. Fig. 1, when compared with Fig.
2, implies that the effect of permeability on the impedance variation appears when the
volumetric deformation is accompanied by the wave radiation, because the interaction between
the solid and fluid phases affects the pore pressure generation. For this reason, the effect of pore
pressure generation can be discussed in the time-domain only when the volumetric wave exists.
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Fig. 2 Variation of the stiffness of porous medium for rocking motion with dimensionless
frequency and permeability
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Fig. 3 Soil model for swaying motion Fig. 4 Soil model for rocking motion

Since the analytical form of the above-mentioned impedance functions are still hard to be
directly transformed into the time-domain expressions, the method for modeling impedance
functions in terms of frequency-independent parameters (Nogami and Konagai, 1988) is used in
the present approach. According to the approach taken by Nogami and Konagai, the reaction to
the dynamic lateral motion of an embedded massless disk is well approximated by a synthesis
of a couple of Voigt models arranged in series with an added mass at the end (Fig. 3), and three
voigt models allows the precise approximation to be obtained within the frequency range,
0.02<ay<10. Concerning the rocking motion of the embedded disk, Konagai (1995) also showed
that the approximate impedance function of the disk in the frequency domain (Nogami and Sun)
is well approximated by the synthesis of springs and dashpots illustrated in Fig. 4. The spring
constants, damping constants of the dashpots and the added mass for the models are frequency-
independent, and the functions of Poisson’s ratio when the motion of disk generates volumetric
waves. Therefore, it would be rational to think over the possibility of incorporating the effect of
pore-pressure generation just by introducing the equivalent Poisson’s ratio as the function of the
bulk moduli of solid and fluid phases, permeability and porosity of soil.



Reviewing some soil profiles along the elevated section of the Hanshin expressway, Kobe, that
suffered the devastating damage by the Jan. 17 earthquake of 1995, parameters for describing
the three typical soils are set at the values listed in Table 1. The bulk modulus of water Q
entrapping air bubbles is noticeably reduced, when compared with the state of perfect

saturation, and the modulus depends strongly on the degree of saturation.

Table 1. Approximate values for parameters of some typical soils in the area of Kobe

. Porosity Ps k OAD=2+24) | QAD=A+21)
Soil type n (gfem®) (mfs) (s=0.95) (s=1.0)
Diluvial sand or gravel | 0.15-0.45 | 2.6-2.7 | 10%10™ 0.0082 8.99
Alluvial sand 02-05 | 2627 | 10%-10° 0.036 39.6
Silt or alluvial clay | 0.3-0.55 | 2.5-3.1 | 10%-10" 5.66 6180
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Fig. 5 Comparison of the stiffness calculated by the model of porous medium and the model of
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continuous medium with equivalent Poisson’s ratio
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Fig. 5-a and Fig. 5-b show the variations with frequency of both real and imaginary parts of the
horizontal impedance functions for different values of permeability coefficients, with the other
parameters being set at the prescribed values (n = 0.3, @/D = 10, D = 2.0x10" t/m?). The open
marks are the approximate solutions by the present approach. The best fit to the rigorous
solutions is obtained setting the equivalent Poisson’s ratios at the values in the legend. The
equivalent Poisson’s ratio increases as the permeability decreases (Fig. 5-a). On the other hand,
the change in the permeability affects little the equivalent Poisson’s ratio when the bulk
modulus of the fluid phase is low (Fig. 5-b).

Fig. 5-a offers an important revelation that it is quite possible that the equivalent Poisson’s ratio
for a completely saturated soil is much smaller than the one from the PS logging. It is not
seldom that the PS logging provides the measured longitudinal wave velocity of about 1500my/s,
which is equal to the velocity of the sound through water, thus yielding the Poisson’s ratio of
about 0.5. As is shown in the figure, the higher the normalized frequency is, the clearer the
effect of Poisson’s ratio on the impedance function is. Therefore the soil parameters must be
carefully determined especially when a thick foundation with a large representative size is
embedded in a water-saturated loose sandy soil deposit with comparatively high permeability.

TIME-DOMAIN APPROACH FOR EMBEDDED FLEXIBLE FOUNDATION

When an embedded body is a flexible structure like a slender caisson or a pile group, the beam
of Timoshenko type would be preferable to the one of Beronoulli-Euller type for the model of
the embedded body.
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The formulae shown in Fig. 3 and Fig. 4
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Fig. 6 Discretization of a Timoshenko beam determined only by the displacement at the
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depth z. The loading time history is digitized at time increment Az. In the step-by-step analysis,
- ps and py, at time ¢; is expressed as:

Ps,i = ks (ub,i + us,i - ug,i) + ds,i

(6),(7)
P =K, Py +d¢,t

where, d;; and dg; are given as constants at ;, which are determined using known
displacements, velocities and accelerations at the previous time step #.; . By assuming that the

increment of acceleration is proportional to (¢ —¢,)* , the accelerations i, ,ii , and ¢),; can

be expressed as:

Uy, = Ettyi = G
iis,i = 5aus.i - gz,i ( 8 )s ( 9 )7 ( 10 )
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where, & = %ET_) s Gpi» Gey and 7, are the functions of displacements, velocities

and accelerations at the previous time step, respectively (Nogami and Konagai, 1986).
Substituting Egs. (6 ), (7 ) and ( 8 )-( 10 ), into Egs. (4 ), ( 5 ), the following equations are
obtained:
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Both the displacements u;; and u,; within a segment are assumed to be expressed in polynomial
form as:

_ 3 2

Uy = Cx” +Cipx" +Cx+Cy, (13),(14)
— 4 3 2 )

Uy; = Coy ;X" + Cpy x° + Cppx” + Gy x+ Gy

There are 9 unknown constants (Cy;; and Cp;; ) in the above equations. In the transfer matrix
approach, 5 physical quantities are transferred from one end of the segment to another. They
are: (1) displacement due to swaying us; , (2) displacement due to rocking u; , (3) rotation
angle @, , (4) shear force GA(du;,/dz) and (5) moment EI(dzub,,-/dxz) . These quantities are given
at the both ends of the segment. Therefore, the total 10 quantities are expressed in terms of the 9
unknown constants by using Eqs. ( 13 )( 14 ). Moreover, the governing equations ( 11 ), (12)
should be satisfied at the both ends of the segment, that is, another 4 equations are added. As
the consequence, total 14 equations are available. Hence, any 9 equations out of these 14 are
used to determine the 9 unknown constants and, the transfer matrix can be formulated by using
another 5 equations left. After building up the transfer matrixes, there are 10 unknown
quantities on the top and bottom ends of the beam. Therefore, 5 boundary conditions are
seemingly needed to be given in the process of step-by-step computation. However, it is noted
that either or both of u,(z) and u;:(z) could be shifted to any extent as far as the displacement
compatibility is satisfied at the boundaries. In other words for example, it would be possible to



replace up, (z) with up, (2)+B; so that the bottom displacement uy, (Zpomom)+B; is equal to any
arbitrarily chosen constant C . Thus, only 4 boundary conditions are needed.

NUMERICAL EXAMPLES AND IMPLICATIONS

An embedded cylinder shown in Fig. 7 with an inverted pendulum on its top is considered. Two
extreme cases of soil profiles are set up within the possible extents of parameters for the soils
shown inFig. 7. Case 1 premises the presence of the comparatively impermeable sandy soil fill,
probably with finer grains mixed in, over the subsurface alluvial clay, whereas a permeable soil
fill overlies the subsurface material in case 2. The acceleration time history recorded at the
Kobe Marine Meteorological Observatory, Jan. 17, 1995, is input, through a dashpot, to the
stiffer soil layer beneath the depth of embedment (-29m). The dashpot represents the effect of
energy dissipation by the waves going down into an infinite extent. The acceleration time
history, in which the peak value of 818cm/s® has been reached, is noticeably strong enough for
the nonlinear response analysis to be indispensable. In the first place, however, the time-domain
soil-foundation interaction is discussed in terms of linear elasticity for the solid phase, even
though the present approach has the capability of incorporating nonlinear behavior of porous
medium. The subject of discussion is thus the effect of the permeability of soil on the dynamic
response of the soil-structure system.
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Fig. 7 The sketch of the foundation with the soil profile
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Fig. 9 Time history of relative displacements with respect to the different elevations

Fig. 8 shows the time histories of the relative displacement of the pendulum mass to the motion
of the base layer beneath the embedment depth (-25m). It is clear from the figure that about
30% reduction of the peak values of displacement in case 1 is due to the decrease of the
permeability of the surface soil fill. The effect of the permeability is much clearer at the level of
the foundation top (0.0m). It is also noted in this figure that the time histories at different levels
(the foundation top and the middle depth of embedment (-15m)) are out of phases each other.
Fig. 9 shows the relative displacements of the structure with respect to the different elevations,
it is found that the embedded body has the sharpest bent at the middle depth (-11m).



This numerical analysis clarifies a fact that it is quite possible that the response of a foundation
embedded in completely saturated soil with high permeability is much smaller than the one with
low permeability. Therefore, when a soil-structure interaction problem relates to a thick
foundation with a large representative size embedded in water-saturated high-permeable soil
deposit, the Poisson’s ratio obtained by the in-situ PS logging should be modified in terms of
the properties of the soil profiles.

CONCLUSIONS

Based on Biot’s theory and the plane strain wave propagation model, a simple approach for
analyzing the porous soil-structure interaction has been developed. In the present model, the
porous soil medium surrounding the foundation of interest is sliced into a number of elements.
Grasping the typical patterns of wave radiation through the sliced elements, the impedance
functions for various vibration modes of the embedded disk are approximated by the syntheses
of springs and dashpots. Since the springs and dashpots are independent of the excitement
frequency, the present model is capable of analyzing the time-domain response of porous soil-
structure systems. Assuming the case in which a coarse sandy surface soil layer overlies the
subsurface material, the time-domain response of an inverted pendulum on an embedded
upright Timoshenko beam is examined. Change in the permeability of the surface soil within a
possible range yielded a noticeable difference in the response of the structure, because the solid-
fluid interaction within the very surface layer has the greatest influence on the response of the
structure.
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