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AN EARTHQUAKE DAMAGE MODEL USING NEURAL NETWORKS
by:
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INTRODUCTION

Early estimation of damage due to earthquakes is an important concern in Japan. It is useful for
city gas companies to decide whether to shut off the gas supplies following a large earthquake.
If the damage is large, timely shutoff of the gas supply may prevent secondary disasters.
However, if the gas supply was shut off unnecessarily, it might take time to restore the service
and the inconvenience to the customers may be more serious. In an attempt to make an early but
accurate estimate of damage to customers' buildings and pipelines, an extensive monitoring
system of earthquake intensities was developed in Japan'. This system measures the peak ground
acceleration (PGA) and the Spectrum Intensity (SI) at many points within a service area. The
measured PGA and SI are transmitted by radio to the headquarters of the gas company where the
damage estimation is conducted.

To estimate the damage from PGA and SI, however, is not an easy task. Obviously, if we
specify the structures and input motion in terms of time history, sophisticated response analysis
can be conducted. However, if we must estimate overall damage of many types of structures from
the measured earthquake ground motion indices, a quick and robust method is necessary. The
PGA is the most commonly used index to describe the severity of the earthquake ground motion.
However, it is well known that a large PGA is not always followed by severe structural damage.
Katayama et al.2 demonstrated that the SI value has a better correlation with structural damage
than PGA. Other indices of earthquake ground motion, e.g., peak ground velocity (PGV), peak
ground displacement (PGD), duration of strong motion, and spectral characteristics of various
definitions, can also be considered in such a damage estimation**5. Ando et al.® demonstrated
that PGA, PGV, and PGD are correlated to the damage of short-period, intermediate-period, and
long-period structures, respectively.

Correlating the ground motion indices to the observed damage in a mathematical form is not
easy because of the large uncertainties involved and the relationship must be highly nonlinear.
A conventional way to construct such a relationship from observed data is to use multiple
regression analysis. In such a case, a functional form must be assumed to relate input and output
parameters. To avoid this, the use of neural networks is proposed in this paper for earthquake
damage estimation,

Among several new techniques of artificial intelligence, neural networks or parallel distrib-
uted processing (PDP) has recently drawn considerable attention in various fields of science and
technology. Along with the development of theories and computational algorithms™, the
technique has been applied to fields like automation, character recognition, electro-communica-
tion and noise filtering, image processing, industrial control problems, etc. Recently, it has been
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applied to problems in earthquake engineering, e.g., active vibration control of structures®,
seismic hazard prediction'®.

Unlike expert systems that require human experts to formulate rules with which to arrive at
a solution, neural networks need only examples of the input and output. Through a learning
process, the neural network will attempt to find an internal state to represent the relationship
between input and output parameters. The use of neural networks for earthquake damage
estimation has several other advantages: once the network has been set up, damage estimation
from new inputs is very fast and retraining the network for new data is relatively simple and can
be done off-line. However, since the estimation is highly dependent on the learning data, we must
prepare well-examined data sets.

TRAINING DATA

To construct a relationship between earthquake ground motion and structural damage, a data set
comprising inputs (strong ground motion parameters) and outputs (damage) must be prepared.
There are basically two methods for doing this: one is to collect actual earthquake records and
damage data near the recording site; the other is to perform earthquake response analyses for
given inputs and models and obtaining the resultant damage (outputs). The former is more
convincing because it uses actual damage data. However, good recordings obtained near
structural damage are few. With the latter, it is easier to prepare well-distributed data. Since it
is not based on actual observations, however, much care should be taken in selecting structural
models and input motions. The former was used by the authors and reported elsewhere''. The
overall damage was given in three classifications (i.e., negligible, moderate, and severe) based
on the observed damage to buildings and pipelines. The classification was based on extensive
literature survey apd some site investigations. It was found that although the resulting neural
network can give good estimates for negligible and severe damage, the data is not enough to
estimate moderate damage well. For this paper, the latter method is used. However, since
recorded ground motions are not well distributed within the expected range of values, we use
simulated ground motion for the analysis. ‘

Simulation of Strong Ground Motion
The Kanai-Tajimi (K-T) power spectrum is used to generate stationary time series that are
then multiplied by a trapezoidal envelope function to represent the duration of motion and the rise
and decay of the ground motion. In this study, the rise and decay times of the ground motion are
assumed to be constant at 2.5 s. The Kanai-Tajimi power spectrum is defined as
1+4h2 ®?/ w}
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where wis the circular frequency under consideration, S istheintensity, @, isthe K-T frequency,
and h_ is the K-T damping.

Lai'? studied the statistical characteristics (e.g., mean, standard variation) of the K-T
- parameters based on actual earthquakes. Although he determined probability density functions



Table 1. Parameters for earthquake generation

Parameter  Lower Limit Upper Limit

So 1.0cm?/s®  500.0 cm? /s?

wg 4.0 rad/s 40.0 rad/s
(0.64 Hz) (6.34 Hz)

hg 0.15 0.60

total time 73s 20.0s

for the K-T parameters, it is desired to have a uniformly distributed set of parameters to have a
well-distributed data set. Hence, the values of the parameters used to generate the artificial
earthquake motions are randomly selected from a range of typical values (Table 1) assuming a
uniform probability distribution. In this study, 500 artificial ground acceleration time series are
used. Figure 1 shows the distribution of the maximum acceleration and SI for the set of simulated
ground motions.

As the simplest indices of ground motion severity, the PGA, PGV, PGD, and SI of the input
ground motion are considered. Note that in this study, the SI value is defined as the average
velocity response spectrum of 20% damped single-degree-of-freedom systems with natural
period between 0.1 s to 2.5 s as®

l 2.5
SI =57 L  Sy(Th=0.2) dT Q)

In addition, the root square, R , of the acceleration defined as

R=A[ @ dr 3)

where a(1) is the ground acceleration, is used to account for the total power of the ground motion.
The time duration of the ground motion, T, defined by Trifunac and Brady" as the time where

the middie 90 percent of the total power is

realized, is also used.

Structure / Damage Models

To estimate the damage of structures due
to strong ground motion, the nonlinear re-
sponse of single-degree-of-freedom (SDOF)
models using the Newmark-P method is used.

PGA (cm/s/s)

Two SDOF models that represent two types
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Figure 1. Distribution of the peak ground
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(Wooden 2) represents fire-resisting woodets  gimylated earthquake ground motions

(Wooden 1) represents ordinary wooden
framed houses with two stories and a fun-
damental period of 7=0.55 s. The second



framed houses with two stories and a fundamental period of 7=0.35 s. The models have bilinear
stiffness with the secondary stiffness taken as 20% of the initial stiffness. The damping ratio is
taken to be 0.05 and the restoring force at yielding is*

Q,=mg-C,  whereC,=025/NT )
and rm is the mass (taken as unity), g is the acceleration due to gravity (=980 cmy/s2), and T'is the
fundamental period (s). The damage to the structure is then given in terms of the ductility factor,
L, defined as

U
u = max (5)

Uy

where U, is the maximum displacement by a step-by-step bi-linear analysis and U is the yield
displacement. -

It should be noted that the structure/damage models and the strong ground motion model
employed here are rather simple. However, the main purpose of this paper is to demonstrate the
use of neural networks for the quick estimation of damage, and more sophisticated models can
be introduced in a future study using the same procedure.

NEURAL NETWORK MODEL

A neural network is a collection of parallel processors connected in the form of a directed graph.
A network consists of neurons or Processing Elements (PEs) which are arranged in layers. The
neural network structure used is a three-layered feed-forward neural network with full connec-
tivity and bias (Figure 2). The bottom layer called the input layer holds the input vector and has
one PE for each variable in the input vector plus an optional bias. The top layer called the output
layer holds the output values of the network. In between the input and output layers, there can
be one or more hidden layers with different number of PEs. We use one hidden layer with four
PEs and bias. It widely known'*'® that one hidden layer is generally sufficient for back-propa-
gation networks. A single hidden layer network is also easier to train and gives excellent results.
We found that networks with more than four PEs in the hidden layer does not really give
significant improvement but takes more time to train, at least, in the case of this problem.

Input data is fed to the input layer and processing is done layer-by-layer up to the output layer.

() ductility factor Output Layer

Hidden Layer

Input Layer

Figure 2. Neural network structure for this study



The output values of the hidden layer and output layer PEs can be expressed as*®
N M

utj.' =fh (iz_:l w;’ixi +9;7) and 0ut,‘j=f”(iz,l w,‘jj outjh +92) (6)
respectively, where W is the connection weight of the jth PE from the ith PE of the input layer,
x ; is the ithscaled input, 0 i is the bias term for the jth PE and fis the transfer function between
two layers. The superscripts define the variables for the outer layer and the hidden layer.
Although neural networks are based on parallel processors, it is easy to simulate the computation
process using sequential computers. Given randomized initial values of the wei ghts and biases,
the network output can be computed for a given input vector. The connection weights are then
updated to decrease the difference between the network output and the desired output. The bias
term is similarly updated by treating it like a weight with unity as its input value. In this study,
the weights are updated after one complete pass of the training data set. The training is stopped
after the error becomes less than a given value or has become stable.

The performance of two variations of the back-propagation algorithm; namely 1) the
Normalized Cumulative Delta Rule!” (ncdr) and 2) the Extended Delta-Bar-Delta Rule!® (edbd);
and arandom search algorithm called the Directed Random Search'® (drs) is presented. Toexamine
the performance of the transfer functions, two functions, namely the sigmoid and hyperbolic
tangent (tanh) functions, are compared. The input and output values are scaled based on the
minimum and maximum values of the training data according to

Ry () F %

Xin

max
where ; is the scaled value of x, lL and /,, are the lower and upper limits of the scaled value,
respectively,and x . and x _are the minimum and maximum values, respectively of parameter
x in the training data set. The [, and /,, of input values are -1.0 and 1.0, respectively. For output
values, [, is -0.8 in the case of the tanh transfer function or 0.2 in the case of the sigmoid transfer
function, while /,,is 0.8 for both transfer functions. Scaling of the data values is needed to prevent
the saturation of the transfer functions and to normalize the influence of input parameters with
different units. Thex . andx,_values for the input and output values are given in Table 2. The

computations for the three algorithms are done using the NeuralWorks Professional II/Plus
Simulator's. Figure 3 shows the learning convergence for selected epoch counts (the number of

Table 2. Minimum and maximum values used in scaling

Parameter Xmin Xmax

PGA (cm/s2) 22.49 1573.78
PGV (cm/s) 3.09 111.12
PGD (cm) 0.66 43.40
SI (cm/s) 3.52 126.99
Rs (cm/s3/2) 23.58 1631.02
Td (s) 3.09 15.15
m (Wooden 1) 0.16 7.15
m (Wooden 2) 0.11 7.30




——O0— npcdr (tanH) ——®— ncdr (sigmoid)
—&— edbd (tanH) ——&—— edbd (sigmoid)

o drs (tanH) ~ —®—  drs (sigmoid) Structure Model - Wooden |
1.0
- +
] .\""\0—0—-0—0—0——0—0 7} 7 +
0.9 1 g" 6 -
' E .
g 08 < 51 I
=1 4 bt 4
© 5 4- A
E 0.7 2 b
o T = 31 +
: = >
067 2 2 Lt
°
0.5 5 i
0.4 — Tt 0 | — T T T T T
0 200 400 600 800 1000 0 1 2 3 4 5 6 17
Epoch Count Ductility Factor (Network)

Figure 3. Performance curves of the threelearning ~ Figure 4. Comparison of ductility factor
algorithms using the sigmoid and hyperbolic  based on analysis and neural network for
tangent transfer functions (for structure model  the training data set

Wooden 1)

weight updates) in terms of the root-mean-square error defined as

N
Epys = \/NL (g (des, —outn)z) N

where des, and out are the desired and network output of the output layer PE for the nth input

vector, respectively. N is the number of training data. It can be seen that for the back-propagation
algorithms the tanh transfer function gives better performance and that the edbd algorithm using
the tanh transfer function gives the best performance. For subsequent computations, the edbd
algorithm with fanh transfer function is used. After training, the output of the neural network for
the whole training data is compared to the desired output based on the bi-linear analysis in Figure
4. The results show good correlation for both structure models in the recall tests.

RESULTS

Sensitivity Analysis

Although neural networks can find a relationship between the input and output values internally,
it is not always easy to interpret the resulting weight state. Table 3 shows the resulting weights
and biases after training for model Wooden 1. No general trends regarding the weight states can
be deduced by simple inspection because all the weights and biases are interrelated. Thus, the
effect of one input parameter to the output is difficult to analyze. Alternatively, it is possible to
compute the sensitivity of the output value with respect to one of its input by taking the partial
derivative. From Equation 6, the partial derivative of an output PE, out § ,withrespect to an input

parameter, x _, is then

n?



Table 3. Weights and bias values for model Wooden 1

of [N hl h2 h3 h4 Bias
Out -09793 -1.6648 04552 -30525 -0.2723

b |N PGA PGV PGD SI Rs Td Bias

hl 06847 -02302 -06975 0.7066 00630 -0.1105  0.6531
h2  1.8667 -02285  -0.3556 -0.8487  0.9808 -0.0761  0.8459
h3 03843 -0.5458  -0.1407 17752 -04337 04247 -12121

h4  -1.2547 0.1191 0.4160 0.0725 -0.5285 0.0789  -0.8422

M N
aj (outZ) =f9 (/Z_la)’ij fh (z_‘,l w}’i X +9;’) +9‘;)-

%(w" S (v%‘,a)hx +9h)-w") (8)
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It can be seen from the above equation that the partial derivative depends not only on the
weights and biases but also on the current values of the input variables, x's Thus, it is difficult
to generalize on the trend of the output value with respect to a change in a single input value.
However, the distribution of the partial derivatives for the entire training set can be used to
qualitatively describe the sensitivity of the output value. Figure 5 shows the histograms of the
partial derivatives for structure model Wooden 1. It can be seen from the scatter about the zero
point that the output is more sensitive to the PGA, SI, and R and leastsensitive to the time duration
of motion, T,. Figure 6 shows the plot of the ductility factor, m, with respect to each of the input
parameters. From this figure, it can be seen that the ductility factor is uncorrelated to T, for this
training data set. Thisisadirect consequence of the assumed uniform distribution of the total time
of simulation together with the Kanai-Tajimi parameter, S,. Low intensity shaking may have
large T, and high intensity shaking may have small 7, The same trend can be observed for
structure model Wooden 2.

Input parameter selection

The previous section has identified the input parameters that have the most effect to the
damage. Itis then interesting to see the effect of using a reduced number of input parameters to
the performance of the network. Of particular interest is the estimation using just PGA and SI
since these indices are measured directly by a new type of seismometer of a Japanese gas
company'. The summary of results is shown in Table 4. The trend is that more input parameters
will generally give better results. However, if the input parameters that are most influential to
the output are used (i.e., PGA, SI, and R ), the result is comparable to the one using all input
parameters. The estimation using just PGA and SI is also comparable to the best estimation. It
should also be noted that the appropriate parameters for damage estimation are structure
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Table 4. Root-mean-square error and correlation between analysis and neural

network after training (Simulated earthquakes, No. of data = 500)

Input Wooden 1 Wooden?2
Parameters RMS error  Correlation RMS error  Correlation
PGA, PGV, PGD, 0.406 0.913 0.454 0.924
SI, Rs & Td

PGA only 0.747 0.665 0.703 0.809

SI only 0.546 0.837 0.833 0.717
PGA & SI 0.434 0.900 0.493 0.910
PGA, SI & Rs 0.424 0.904 0.479 0.915
PGA, SI & Td 0.429 0.902 0.482 0.914
PGA, PGV, PGD, 0.413 0.910 0.478 0915 -
SI & Rs

Table 5. Summary of earthquake events used in this study

Earthquake Event  No. of records (components)
Niigata (1964) 1 2)
Matsushiro (1965-66) 23 46)
Tokachi-Oki (1968) 3 ©)
Miyagiken-Oki (1978) 4 8)
Nihonkai-Chubu (1983) 2 “)
Chibaken-Toho-Oki (1987) 9 (18)
Izu Pen. Toho-Oki (1989) 4 )
Kushiro-Oki (1993) 5 (10)
Noto Pen. Oki (1993) 1 )
Imperial Valley (1940) 1 (2)
San Fernando (1971) 5 8)
Mexico (1985) 2 4)
Loma Prieta (1989) 19 (38)
Total 79 (156)

dependent. For Wooden 1 (T=0.55 s), "SI only" shows much better performance than "PGA
only". However, for Wooden 2 (T=0.35 s), the PGA is a better index than SI. This observation
is the same as the one by Ando et al.®

Estimation using actual earthquakes

To test the performance of the trained networks in the case of actual strong ground motion, the
time history of actual earthquakes used by Yamazaki et al.!' are considered. Since these time
histories were notused to train the neural networks, the behavior of the estimates would show how
well the trained network will perform in an actual implementation. Table 5 shows a summary of
the earthquakes and the number of records for each earthquake used. In the case of Wooden 1,
the data cases the network outputs and analysis outputs for the 156 time histories have good
correlation. However, there are several gross over-estimations for the case of Wooden 2 as shown
in Figure 7a. This behavior is seen as an instability of the network due to the use of an input not
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Figure 7. Performance of two trained neural networks if recorded earthquake ground motions
(156 components) are used as input

within the range of the training data. By comparing the range of input parameters for the
simulated and actual earthquake records (Figure 8), it was observed that the T, for the actual
records greatly exceeded the range of the simulated earthquakes. If 7,is not used as an input, the
instability is eliminated. Based on the sensitivity analysis, the effect of not using 7, in the esti-
mation will be small. Another way to eliminate the instability is to simulate new strong motions
by increasing the range of the total time in Table 1 and retrain the network. But the difference
in the estimation compared to the case of not using T, as an input will be small. Table 6 shows
the performance of the neural networks in Table 4 for the actual earthquake ground motions. Note
that the network that uses PGA and SI only gave the best performance.

Also of particular interest are three data points marked "A", "B", and "C" in Figure 7b. These
points have large errors that cannot be attributed to instability. "A" corresponds to the
acceleration time history of the East-West component of the 1993 Kushiro-Oki earthquake in
Japan recorded at IMA Kushiro Station (PGA=920 cm/s?, SI=78 cm/s). "B" corresponds to the
S$74°W component of the 1968 San Fernando earthquake recorded at Pacoima Dam (PGA=1055
cm/s?, SI=74cm/s) while "C" correspond to the S 16°E component (PGA=1148 cm/s?, SI=105cm/
s). These ground motions are very strong and are in the range where the training data are sparse
(Figure 6). Hence, when we apply a trained network to new input data, we must examine whether
the data exist within the range of the training data. It must be emphasized that neural networks
are learning data dependent and that to prepare a good learning data set is the most important issue

in the use of neural networks.
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Table 6. Root-mean-square errorand correlation between analysis and output of trained networks
in Table 4 using actual earthquake ground motion (No. of data = 156)

Input Wooden 1 Wooden2
Parameters RMS error Correlation RMS error Correlation
PGA, PGV, PGD, 0.373 0.883 2.090 0.175
SI, Rs & Td -
PGA only 0.617 0.691 0.503 0792
SI only 0.378 0.879 0.608 0.840
PGA & SI 0.320 0.920 0.446 0.840
PGA, SI & Rs 0.332 0.907 0.459 0.830
PGA, SI & Td 1.229 0.400 0.755 0.638
PGA, PGV, PGD, 0.375 0.882 0.480 0.814
SI & Rs -
CONCLUSIONS

The use of neural networks to predict damage from simple ground motion indices is demon-
strated. Since the strong motion parameters of recorded accelerograms are not well distributed,
simulated ground motions are used. The training data is generated by computing ground motion
indices of the simulated earthquakes. The damage is given in terms of the ductility factor
computed from a step-by-step bi-linear analysis of two structural models representing wooden
houses commonly found in Japan. Neural networks are found to be usefulin finding arelationship
between ground motion indices and the corresponding damage. The neural network acts as a
transfer function with the ground motion indices as input and damage as output. The trained
neural network is tested by using actual earthquake gr“ound motions to compute the indices and
ductility factor. It is found that the trained network performs well. However, careful attention
must be paid to the range of values of the input vector, as this could lead to instability in the
predictions. New input vectors used for estimation must be within the range of the training data
vectors. The input parameters that have greater influence to the output can be identified
qualitatively after training by taking the partial derivative of the output with respect to an input
variable for the entire training data set. The PGA, SI, and root square are found to be the most
influential to the damage. The damage estimation using PGA and SI is comparable to the best
estimation when using the training data and gave the best estimation when using actual
earthquake ground motion. Although the analysis is limited to two structure models, other
structure types can be similarly analyzed and the idea may be conveniently used in the damage
estimation based on earthquake monitoring.
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