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ADAPTIVELY SHIFTED INTEGRATION TECHNIQUE
FOR NONLINEAR FINITE ELEMENT ANALYSIS
OF LARGE-SCALE FRAMED STRUCTURES

by
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1 Imntroduction

The relations between locations of numerical integration points in the linear and the cu-
bic beam elements and those of the occurrence of plastic hinges were first found out by
Toi [1], by considering the equivalence conditions between the strain energy approxima-
tions of the finite elements and the physical models (the rigid bodies-spring models) in
which the locations of stress evaluations and plastic hinge formations are explicitly given.
These relations were effectively used in the adaptively shifted integration technique (ab-
breviated to the ASI technique) for the plastic collapse analysis of framed structures [2].
In the present study, the ASI tecnique with the cubic element is applied to the geometri-
cally nonlinear, elasto-plastic analysis as well as the geometrically linear, plastic collapse

analysis in order to reduce a computational cost for large-scale framed structures.

2 Adaptively Shifted Integration Technique

The relation between the locations of numerical integration points (s;) and those of
occurrence of plastic hinges (r;) in the cubic element (—1<r;,5;<1) is expressed by the
following equation [1]:

1 .
T = :Fi—is—z (1=1,2;81=—33) (1)

In the ASI technique, s; are placed on the Gaussian integration points (s; = ¥1/v/3) in
an elastically deformed element, and they are automatically shifted to the new positions
according to the equation above immediately after the occurrence of a plastic hinge on

either end of the element (r; = F1). Assuming that the fully-plastic section has first
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occurred at the left end of the element, the incremental stiffness matrix and the initial

stress matrix for the element at the following incremental steps are expressed as

k= 4 {(Bo(=)1 + Be(=MD(-D) (B +[Be(=3]) )
+([BoG))* + [Be(DID(D] ((Bo(3)] + [Br(:)D}

kel = 2 {[6(-IS-16(-3)] +HEGMSWIE(]} ©

in which the parenthesized figures indicate the locations of integration points in [Bg],
[Bz), [G] and those of the points at which stresses are evaluated in [D.], [Dy], [S],
respectively. The matrix [De(1)] is replaced with [Dy(1)] as the fully-plastic section has

also occurred at the right end of the element.

3 Numerical Examples

By using the ASI technique, sufficiently accurate solutions can be obtained by one-
element idealization per member in the geometrically linear, plastic collapse analysis as
shown in Fig. 1. In geometrically nonlinear analysis, the members which are judged to
buckle during the course of calculation are automatically resubdivided into four elements
in order to maintain the computational accuracy especially in the post-buckling range.
Fig. 2is an example of the buckling collapse analysis in which the resubdivision into four
elements was conducted at the level of the buckling stress for the member multiplied by
the factor B.

The ASI technique has been applied to the elasto-plastic. collapse analysis of a large-
scale framed structure subjected to earthquake loading as shown in Fig. 3, which is
now under construction in Tokyo bay area. The number of members and member joints
are 1630 and 546, respectively. Table 1 gives an applied static load in the horizontal
direction due to earthquake. Figures 4 and 5 show the results of the geometrically linear
and nonlinear analyses, respectively. The maximum load factor obtained by the geomet-
rically nonlinear analysis is 2.34, which is slightly smaller than that (2.46) given by the
geometrically linear analysis because of the occurrence of member buckling. Both cal-
culations started with one-element idealization per member. However, 60 members were
subdivided into 4 elements during the course of the geometrically nonlinear analysis.
The computing time on the EWS (Sun SPARCstation 10) was 188 minutes (86 incre-
mental steps) for the geometrically linear analysis and 364 minutes for the geometrically

nonlinear analysis.



4 Concluding Remarks

The ASI technique for the plastic collapse analysis of framed structures has been applied
to the geometrically nonlinear, elasto-plastic analysis as well as the geometrically linear,
plastic collapse analysis of a large-scale framed structure. The highest computational
efficiency has been achieved in both analyses. The present technique can be easily
implemented in the existing frame codes using linear Timoshenko or cubic beam elements.
The theoreical basis of the ASI technique including various numerical examples is given
n [1-5]. The authors appreciate Mr. Harada of KUBOTA corporation who has offered

the structural data of the large-scale frame analyzed in the present report.
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Fig.1 Plastic collapse analysis of a simple frame
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Fig.2 Elasto-plastic buckling analysis of a simple frame
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Table 1: Horizontal load due to earthquake

Floor No. | Load (ton)
9th floor 0.0
8th floor 2061.7
7th floor 1668.8

6th floor 983.0
5th floor 411.0
4th floor 54.5
3rd floor 39.0
2nd floor 37.1
1st floor 40.7

Total 5295.8

I'ig.3 Large-scale frame
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Fig.4 Plastic collapse analysis of a large-scale frame
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(b) deformed configuration (load factor = 2.34)

Fig.5 Elasto-plastic buckling analysis of a large-scale frame
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