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OPTIMUM DESIGN BASED STRUCTURAL RELIABILITY THEORY
- Decision making of the optimum shear force
éoefficient of structures -
)] z)
Ki KOH , Koichi TAKANASIHI
§ 1. Introduction

From a point of view of necessitating a lot of studies on account of
rational establishment and certain ground of Importance Factor proposed
in the first draft on seismic load in Archtechural Institute of Japan,
the authors theoritically investigated on making a decision of load
factor of structures with deteriorating strength during the life time of
structures(l). But in this paper, we used a physical vague variable
of general strength of structures. Hanai(2) and Kanda(3) were using the
same variable as well

In the elastic design, such a treatmenl gives us an advantage in
making it possible to assess the reliabilily function with the differ-
ence between the load effect and. the structural resistance. However, in
the ultimate limit state design of structures subjected to large amount
of plastic deformation, the reliability function assesed by the above
mentioned difference may not be generally accepted. Therefore, it is very
important to find out how to define the ultimate limit states of
structures and what criterion and variables we should use in evaluating
the reliability function of structures. Especially, the variable included
in the reliability function must be closely related with the construc-
tion cost in the analysis of optimum design based on reliability theory

According to the investigation that the construction cost for change
of design from the design with the seismic coefficient of 0.2 to 0.3

showed an increase of 10%(4), we can say that the seismic coefficient
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of structures is closely related with the construction cost. Provided ve
represent- the seismic coefficient causing the plastic deformation of
structures by the yield seismic coefficient, the ultimate limit state—of
structures may be prescribed}by the following three parameters,i.ec.,
yield seismic coefficient, plastic obsorption capacity of structures and
energy input to structures. This concept has been very familiar to
earthquake engineers. 7

In»this study, the strong part of earthquake motion will be modelled
by the stationary random process. The reliability function of structures
is expressed by the function 6f yield seismic coefficient;in which the
earthquake load effect is the energy‘input absorbed by the cumulative
‘plastic deformation, and the structural rcsistance is the cumulative
plastic absorption capacity of structures

From the economical point of view of minimizing the sum of the
expected value of loss caused by disasters and the construction cost,
this paper describes the method for estimating the optimum yield
seismic coefficient of structures. For the present time, the shear force
coefficient prescribed by earthpuake resistant design method is
expressed by the product of the following parameters, i.e.,structural
characteristic coefficient,usage factor, and seismic zoning coefficient
and so on, however,it is shown that the method for obtaining the
coefficient by such a treatment may be irrational in view of the

analytical results based on reliability theory

§2. Reliability criterion
The energy balance equation of hysteretic structures subjected to the
stationary random process is given by

B (D40y (DD (0 =my (D (2-D)

A
wvhere wg (t): the energy input absorbed by elastic strain



&;h (t): the energy input absorbed by viscous damping

ﬂ;p (t): the energy input absorbed by cumulative plastic strain

v

w¢ (t): the total energy input to system
~ . )
wg (t) in Bq.(2-1) is a monotonically increasing function of time.

Provided that the energy absorption capacity of structures prescribed to

T ~
.the structural failure in advance, denoted by w is greater than w

r P

structures can survive.

Therefore, the criterion for safety of structures is given by

L. >Tp | (2-2)

~ ~
¥hen W and Wy are random variables, the safety of structures is

A/

" P
equal to the occourrence probabilily of the event{ U)r>UJp} ,in which

Ve ~ ’
Wy andu)p show the structural resistance and the load effect in

reliability analysis. The random variable in the following is shown by

big letters

§ 3. Statistics of energy input absorbed by cumulative plastic strain
The energy input at the énd of earthquake ground motion is dissipated

by the elastic strain. If we neglect it, the total energy input to

system can be expressed as follows(11).

A,
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where M : the mass , Ve : the reduced velocity spectrum Ve for

the energy input absorbed by elastic strain and plastic strain
. '
Akiyama(ll) got the conclusion that the reduced velosity spectrum Ve

is almost equal to elastic velocity spectrum and is approximately shown

by a bilinear relation with the natural period of the system. The energy
~Ar ~
input Wy, absorbed by cumulative plastic strain within Ve is given by

~r ~
Wy =0.5MVp , (3-2)



~
vhere Vp : the reduced velocity spectrum for the energy input

) absorbed by plastic strain

/\‘/'/p is dependent on the amount of the input energy absorbed by viscous
damping within the total energy input. vH'o:wevcr,A\jp will be evaluated on
the concept of reducing /\7e with the structural bcharacteristic
coefficient Ds which shows the level of plastic deformation capacify

of the s‘tructures.- If we use the relation of the energy constant between

elastic response and elasto-plastic response as shown in Fig.l. the

i ~ 2
energy input absorbed by elastic strain is shown by /L;)/e =0.5M (DsVe) ,

~
Vp can be got by the energy balance as follows.

~S 2 ~
v, = [ a-pk) v, (3-3)

~
The reduced velocity spectrum Ve is approximated by a bilinear relation

with some amendment in short period zone for the velocity spectrum of
elastic system(11). Substituting Bq.(3-3) into Eq(3-2), and using the

first period of system T, (= 27[/60‘> . we ohtain the following equation.

~ 92 ~
W = [(1-DE)g by (3-4)

where £ =1 T >Tg
E=(T, / Tg; T, <Tg
Tg : the period that bound between the long period zone and
the short period zone
On the other hand, the energy input to elastic system subjucted to the
stéionary random process with the frequency characteris:tic Qf ground
proposed by Kanai énd Tajimi are random variables. The statistics of it
is approxima'tebly shown as follows(8).

E [Wt] :Sy(wl) T SoTd M (3-5)
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vhere Sy(@l):

E [Wt), V [Wt] : the expectation and variance of Wt

S, :the pdwer spectrum of earthquake ground motion

C’; :the variance of stationary velocity response of elastic systenm

wg,hg :the predominent frequency and damping coefficient of the
ground ,Tq : the duration time

The statistic for the energy input to MDOF of elastic system can be

approximately expressed by Eq(3-5) as well(appendix(A)). In this case,

the parame‘terd‘Z‘-{ included in Eqg.(3-5) must be described for the first
mode of system. Accorrding to the conclusion on the reduced velocity

spectrum obtained in ref.(11), the statistics of the system with viscous
damping 10% in Eq.(3-5) is approximately equal to the total energy input
of.elasto~p1astic system in consideration of the frequency characteris-
tic of ground. The energy input absorbed by cumulative plastic strain 1s

almost dissipated by the first mode, and the dissipation by the higher

mode is small(12). Hence, L’Z)/p vill be dissipated by the cumulative

plastic strain which is caused by the repeated horizontal load that is
~

equivalent to the first mode of system. If we regard /u\)lp and w4 in Eq.

(3-4) as the energy input of system subjected to the stationary randon

process, those two variables become random variables. The statistics

of the energy input is obtained from Eq.(3-4) and Eq.(3-5) as follows.

E [(Wpl = (1-Ds) £§Sylw) = SoTd M (3-6)

2

V [Wpl = (1-Ds) ESy(ap 2z SoTd Mok

- The statistics of Wp normalized by QyXy (Wp=Wp/QvyXy ,Qy=Mg Cy,

Qy -yield strength , % y= yield deformation, Cy = yvield seismic coeffi-



cient) will be regarded as the statistics on the condition that Cyand S,
take some value cyand S, provided that Cy and So are ramdom variables.
In this paper, we assume that only So is a random variable. Then the

mean and mean square value of Wp on the condition that So takes on

some value is given by

7 ESOwa% .
E[WPIS°=S,]=(1-DS)§Sy(a)l) 97 (8-7)
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y
where Cy: the yield seismic coefficient h : viscous damping

Finally, the statistics of Wp is got by using the probabilistic

procedure.

ZE[So] T yal

(3-8)
2
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The statistics of the epergy input showm in Eq. (3-8) is represented as
the function of yield seismic coefficient. Since the denominator of the
first term in the rigth-hand of Eq. (3-8) iﬁcludes the duration time Td ,
this term is not so large value for viscous damping h =10%. So, the

effect ofSy(wl) on Eq(3-8) is small, and still more, since the value of
Sy(wl) is small than 2, we assume that it takes | on the average. Then

Eq(3-8) is shown by

Ve = ————1——'(VZS+1)+VZ:,3 (3-9)
P ooleh

Eq. (3-9) shows that the coefficient of variation V.  is close to the
P

coefficient of variation Vs for the input level of earthquake



~S ~
excitation. The reason is that wg, and w4 shown in Eq. (3-4) are related

to the variables which depend on only Ds and T hnder the excitation of
the staionary random process. -
9AL Probability of structural safety after t years
If we assume that the occurrence probability of an earthquake event is
modelled by Possion process, the probability of structural safety after t
years will be shown by the following equation , even if random variables

in the structural system are included
‘ t
R(t)= exp(-jo A(z)d) (4-1)

vhere R (t) : probability of structural safety after t years
ACz)dzT . probabiiity in which Wp exeeds the cumulative
plastic deformation capacity Wr at time (r,z4dz)
under the condition that structure survives -during the
(0, ), A2(zr) is called the failure rate
In this study, we regard Wr as a random variable, but the yield seismic
coefficient is regarded as an independent variable, not random variable
.It is necessary to estimate the failure rate considering the non-failure
effect concerning the cumulative plastic deformation(l), however, we
neglect this effect because of rare occurrence of structural failure.
Then, the failure rate is shown by

A () =Rop, ’ (4-2)

10 : the expected occurrence rate of an earthquake event with
larger input level than some that of the earthquake causing
plastic deformation

P £ : the probability of structural failure in case that an

earthquake event occured once

The probability of structural failure p £ in Eq. (4-2) is given by



pf=y§w (w )p (v )dw (4-3)
P r Wy T r )

vhere pr(u)p)= 1-Fy (wl,) (Fy

va) :the probability
p p

disribution of Wp) p (w
W

r) the probability density of Wr

Generally, as the probability density function of Wp is described by
Gamma distribution(6), the probability of structural failure will be
obtained by the integral of the distribution function.The integral makes
more complex expression. So, in order to avoid the integral expression,
ve will focus on the tail at the right-side of the gamma distribution on
the concept that the large value of Wp generally causes the failure of
structures. Since the probability distribution for the tail is regarded
as that of the largest value of Wp, it will approaches to the type I
asymptotic distribution. The reason is shown in Appendix (B). As shown in
Fig.B-1 , good consistence is got in the part of small probability of
failure. llence , in this study, we assume that the distribution function

of Wp is described by the double exponential distribution as follows.

w
exp(- exp(—al_f) +a2)) (4-4)
w5

pr(wp)=

vhere a =1.28/pr , Qg = al( 1 - 0.45'\/Wp)

X : the expectation of X
Eq. (4-4) is expressed by the function of the vield seismic coeffcient
Considering only the swmall part of the probability of failure, assuming

a normal distribution as the density function of Wr,and obtaining p £

from Eq.(4-3), the probability of structural safety of Eq.(4-1) is
shown by

R (t) = exp ( —Aopf t) (4-%5)



where p. = exp(- al—u—)( 1- 0.5 w V:‘Z’Vr )+ az)

2

= W W, glCy
T 7 q.pl 2
W, (I-D% V€8 y (wPmELS 1T g o]
"V ¢ the coefficient of variation of W,

win Eq. (4-5) stands for the central safety factor.
é 5. Optimum yield seismic coefficient of hysteretic structures
In the structural reliability theory, it is generally recognized fto

use probability as the only measure of structural safety. There 1is
however, no clue to how to decide the proper prébability of safgty to be
given for our structures at present(2). In this study , we assume that
it is decided froh an economical point of view of minimizing the sum of
the expected value of loss caused by disasters and the constuction cost

(1),(2). The total loss is shown by

tu SR(t)
E[D] =Jw,,(t) [-———1dt +Cg(Cy)

0 ot

o) P ’
W) :ftpe "Tdz (5-1)

E [D] : the expected value of total loss
VVp[t] : loss in case that structures destroved after t years

C (Cy) :the construction cost

P : the expected annual profit from structures
5 : the annual rate of profit
t1J : the expected life time of the structures

Substituting Eq(4-5) into Eq.(5-1) and neglecting the infinitesimal
terms gives
W, O A

7

E[DI= pe+Cg(Cy) (5-2)



The construction cost is asummed to be described as follows(Appendix(C).
Z
Cg(Cyl)=C1+Cy Cly (5-3)
where Cl ,CZ : constant

As Eq.(5-2) is shown by the function of Cy , the yield seismic co-

efficient is obtained by the differential of E [D] about C2y as follows.

SE(D) WO A @ — 9 ) )
\'g 7 yopt
— — 2 _
exp(aw,pt{1-05awsp ¢ Vwr) tayg)+Cy=0 (5-4)
mopt _ Wr gZ
where 5 - 7 (@ )ELS T 7
CYopt (I-Dg) €S 5 {@ odtd @y
C‘yopt the optimum vield seismic coefficient

As a special case, when the coefficient of variation VW is equal to
r

zero, Eq.(5-4) becomes the following equation.
2 2ol exp(-alwopt+a2)—2——£—-— = Cy (5-5)
(4 ' Cyopt
The optimum yield seismic equation got from Eq.(5-5) is shown by

2 WO A,

Cyopt = exp(-a Wy, + ag) (5-6)

7 Cyg
Eq. (5-8) stands for the relation between the optimum central safety
factor and the optimum yield seismic coefficient.
Substituting Bq(5-6) into Eq.(4-5), the optimum value of the probabi-

lity of safety in case of VW =0 is shown by
r

2 .
TVWpCVop’tCZ L\
L2BWO) @6 p ¢

1F>1,[Wl,>Wp (Cy=cyopt)]= exp (- (5-7)
From Eqg.(5-7), we may understand the optimum probability of safety is



independent of A o.

Next, in order to get the relationship between the optimum yield
seismic coefficient of standard structures and that of non-standard
structures, we introduce the following five equations. .

A
~y 2 wo I W{0)

I-D’g = a,(I-D's ) (5-8)
~ ~ v 7

Ao =Z A, Sylw) = R Sy (w)

i 2.2

Cyopt=ccyopt

vhere ap :the coefficient to describe the rate of plastic deformat-
ion of non-standard structures to that of standard structures
1 :the coefficient to describe the rate of impotance factor
of non-standard structures to that of standard structures
Z :the coefficienf to describe the rate of seismic zoning
coefficient on non-standard structures to that of standard
structures
R :the coefficient to describe the rate of vibrational
characteristic coefficient of non-standard structures to
that of standard structures
C, :the coefficient to describe the rate of optimum yield
seismic coefficient of non-standard structures to that of
standard structures

Substituting Eq.(5-8) into Eq.(5-6) gives

aPR (148 (1n I+1n Z~InavanR)) (5-9)

c 3
where B = VWp L2 Wy py )
}]va in Bq.(5-9) is shown by Eq.(3-9). The coefficient of variation of

input level Vs is about' 0.3 or 0.4(8). As B 1is dependent on the
duration time, natural period , and damping factor, it shows around 0.2 in

case of Td =]10sec, h=0.1, and —‘Eopt >2. Thus, each product of B and

lna or ! nR is small in comparision with 1. Finally, neglecting this



two terms in Eq. (5-9) givés

C:/apR(l*r 1ni®+ 1025 (5-10)

from which we may understand that the coefficient C is independent of I

and Z in case that the Vy  is equal to zero.In the case of Vy =0
p p

it means that there is no probabilistic variation in the earthquake

excitation, and VVp caused by the deterministic input like El Centro

earthquake becomes deterministic. Hence, according to Eq.(2-2), the
structures will be completely assured for larger cumulative plastic
absorption capacity than plastic deformation caused by the earthquake
excitation. It may suﬁport the intuitive judgement that the above-
mentioned two factors are independent of the optimum yield seismic co-
efficient in case that the safety of structures is evaluated by the
deterministic excitation. Therefore, the coefficient Zand I affecting
the probability of structural failure and the seriousness of the failure
must be considered only in case that the structural failure is a proba-
bilistic event.

The coefficient C in Eq.(5-10) stands for the value that reduced the
optimum yield seismic coefficient for the inertia force distribution
with the first mode to the seismic coefficient. As it is natural that
optimum yield shear coefficient is expected to be near the maximum shear

- force coefficient of linear system(l14), we can replace (:y<>p-t with the

products of Ai and Co, in vhich Ai stands for A i-distribution and Co
stands for the standard value of shear force coefficient. Then the
distribution of shear force coefficient based on reliability theory is

shown by

C iij ap R (1 +1Inl

where Ci: the shear force coefficient of i-story

B B

+1nz” ) AiCo (5-11)



For the present time, though the shear force coefficient prescribed
by earthquake resistance method is expressed by the.products of struc-
tural characteristic coefficient,usage factor,and seismic zoning coeffi-
cient and so on. Eq.(5-11) shows the different type of distribution. The
second term in the rigth side of Eq.(5-11) stands for the increase of
shear force coefficient to assign to the seriousness of failure, apd
the third term stands for the increase of that to assign to the proba-
bility of failure. On the confrary, those two factors will be regarded
as the decrease of that in relation with the way of how to evaluate the
standard shear force coefficient. The optimum shear force coefficient in

Eq. (5-11)shows the expression multipling the sum of those two factors
by the structural characteristic coefficient and the vibrational char-
acteristic coefficient. Though the bold assumption and approximation are
introduced in evaluating the probability of structural failure and the
construction cost, Eq.(5-11) shows that the coefficient obtained from Eq.
.(5-11) may be more rational than the one producting each factor under
the optimum design based on reliability theory.In this case, undoubtedly,
it is necessary to re-evaluate those coefficient. The conclusion that
the system adding the factor affecting the seriousness of failure and
the factor affecting the probability of structural failure may be better
than the one obtained by producting those two factors is already report-
ed in ref.(2).

Finally, we would like to show the application limit for the principle
of minimizing the expected value of total loss. In order to get relation

between W{0)/~7 and Cyopt from Eq.(5-2), the differential of the first
term in Eq. (5-2) about C%, must be negative, because that of second ter

mis positive. In that case, we can get the optimum value. It may be
stands for the concept in which the optimum design with the minimum cost

will be executed in case that the yield seismic coefficient is as small
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as possible. However, such a concept is not non-realistic and should not
be. used for the actural design of structures. Hence we can obtain the
upper bound of the coefficient of variation for the cumulative plastic
absorption capacity of structures on the condition that the differential
of the first term in Eq. (5-4) is negative.
VW<O.884:\{EP— (5-12)
Wopt

_é 8. Conclusion

By modelling the strong part of an earthquake with the stationary
random process, we evaluated the probability of structural safety after
t years.in which the energy input absorbed by the cumulative plastic
strain is regarded as the earthquake load effect,and the cumulative
plastic absorption capacity is regared as the structural resistance, and
still more, we described the new method to estimte the optimpm yield
seismic coefficiept or the optimum shear force coefficient from an

economical point of view of minimizing the sum of expected value of loss

caused by disasters and the constuction cost.

Appendix (A)
The expectation of the energy input to system subjected to white noise
excitation is shown as follows.

.M
E [Wt] =z SoTd ), Mj (A-1)
g=
vhere M : the effective mass of j-mode
If we neglect the interactive terms between each mode, the variance of

the energy input is shown by

m
V[Wt] =27 SoTd JMjok (A-2)
= 4
vhere o%_ : the variance of velocity response of j-mode
a. -

According to the conclusion that the total energy input to systenm



mainly depends on the total mass and the first natural period of systenm,
and considering the frequency characteristics of the ground, denoted by

Sy(wl) , the statistics of Wt is shown as follows(8).
E [Wt] =Sy(w,)7 SoTdM (A-3)

VW] =Sy(w )2z SoTdM 6%
)

Appendix (B)

We will focus on the tail at the right-side of the gamma distribution
on the concept that the large value of Wp generally causes the failure
of structures. Since the probability distribution fot the tail is
regarded as that of the largest value of Wp, il is obtained by Cramefs
method as follows(13).

First of all, we introduce the following variable

£,° n(l - P‘Wn (w)) (B-1D
where W : the largest value of a random variable w with
the gamma distribution
¢ )
v, nw
Fyw )z ————i (B-2)
n T {(v)
, ~ 7%Wn ]
I' (v ): Gamma distribution, T (v, 7w, )=J d e Ydu
0

7 = v/Elw] ,V=1/Va
Elw] ,NQV :the expectation and the coefficient of

variation of W
) o~
According to formulas of mathematics, I'( u,nvvn) in Eq.(B-2) is

transformed as follows.



vti
~ W, & (mwp)
F(u.nwn)= e

n (B-3)

Jev o (D) (i)
The generality is not lost, if we assume that vy 1is a positive intevger.
Then, Eq.(B-3) is turned into

vl , i
(nw ) ® (pwp)

-1 = il

A -
D(v,mw)ze "B DAL -l-pw =- 1 (B0

where T (v)= (v-1) ]
and still more, the coefficient k ( k <1 ) that satisfy the following

equation existes.

(v-1)!
Then, Eq. (B-4) becbmes
T mw) =T 1-e TR7%n | (B8
Substituting Eq. (B-2) and Eq. (B-6) into Eg.(B—I) gives
g = e (FK)7wWgt @n (B-T)

vhere log n= ap
Finally, according to Cramers method, the probability distribution of
Wn is described by the type I asymptotic distribution.

Fu, (W)= exp(- e~{IFK)7wt @q y (B-8)

The ’two parameters K,ap in Eq. (B-8) are approximately obtained by
replacing the mean and standard variation of Wn with E[w] and Cw .28

follows(13).
1.28

k=1-1.28Vy  @p=—— (1-0.45Vy ) (B-9)
w

The numerical result of Eq.(B-2) and Eq.(B-8) is shown in Fig. (B-1)

The broken line is Eq.(B-2).The solid line is Eq. (B-8).The difference



between those two lines is very small.
Appendix (Cj
As shown in 1, there is a report that the construction cost for the
change of design from the working stress design with the seismic
coefficient of 0.2 to 0.3 shows an increase of 10%(4). The
following equation will be obtained from the above-mentioned conclusion,
though it may be more or less rough.

AC - 8C. : ,
S-c.= 5 (c-1)
AC :

s
y oCy -

From Eq.(C-1), the following equation is obtained
Cs (Cy) =Co exp (Cy) _ (C-2)
where Co : constant

Eq. (C-2) is shown by the real line in Fig.(C-1). We assume that it is

possible to approximate Eq.(C-2) by the linear function of C%, (Cs =

Cl + CZ C%,) . The coefficient of Cl and CZ is decided by the least

mean square method. The result is shown by the broken line.
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Fig.1 The relation of energy constant between elastic

|
X X disp.

response end elasto-plastic response
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