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1. INTRODUCTION

When a high-rise or middle-rise building is subjected to horizontal earthquake loads, its
side columns are subjected to not only varying lateral loads but also varying axial loads due to
overturning. A lot of experimental studies were made on inelastic behaviors of steel beam—
columns under constant axial loads[1][2], but few were made on those under varying axial loads.

In the fields of reinforced concrete structure, several experimental studies in considera—
tion of varying axial loads were reported[3][4][5]. In these studies, the change of axial load is
usually controlled to be proportional to the magnitude of lateral load until it reaches to a certain
specified load value, and after that, the axial load is kept constant. Such a loading program given
a priori may be justified for the case that the over all load carrying capacity of the frame is not
so much influenced by the resistance of the column to be tested, for example, in the case of
weak-beam type frame. In the case of weak—column type frame, however, the load carrying
capacity of the frame and then the magnitude of overturning are strongly controlled by the resist—
ance of the column to be tested. In such a case, the axial load change is desired to be determined
dynamically from the resistance of the column measured during the loading test.

In this paper, an intelligent loading program about axial load change is made possible by
use of sub—structuring techniques in a computer—controlled testing system. Loading tests are
performed on H-shaped steel beam—columns, which are assumed to be side columns at the
lowest story of a tower-like building. Also, analyses based on a simple inelastic beam—colunin
model proposed by the authors[6] are carried out in order to check its applicability to the beam—
columns under varying axial loads.

2. INTELLIGENT LOADING TEST

Consider a fictitious structural system as shown in Fig. 1. A rigid body is supported by a
single column and an idealistic pin-roller support. A lateral load and a vertical load, denoted by
F and 2 N_ respectively, are applied to the geometrical center of the rigid body. The column foot
is pinned to the basement and the column top is connected rigidly to the rigid body. The vertical
displacement at the pin—roller support is constrained to be the same with the vertical displace—~
ment at the column top, that is, it is assumed that the rigid body does not rotate. In the following
loading tests, the column in the fictitious structural system is tested as a cantilever beam-column
subject to varying axial and lateral loads. From the equilibrium condition on the rigid body
shown in Fig. 2, the axial load change, denoted by N_, is derived as:

N, =(KLF + M)/H M

where KL: Height of loading point from the column top
H: Distance between the column top and the pin-roller support
L: Column length
F: Lateral resistance, M: Bending moment at the column top
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In the following tests, the resistance terms in Eq. (1), F and M, are measured from the
loading test and used to determine the axial load change to be applied to the specimen. The
values of KL and H are set to 10L and L, respectively. The test setup used is shown in Fig. 3,
where the column specimen is connected to the rigid loading beam and loaded by two jacks at
the central joint and the pin-roller support. Main data measured during the tests are (1) the load
applied by the transverse actuator at the central joint, P, (2) the load applied by the other jack in
the axial direction, N, (3) the transverse displacement at the central joint, 8 , and (4) the rotation
at the central joint, 6. The bending moment at the central joint is calculated T)y:

M=N"9 +FL, ()]

where F is the reaction force at the support and evaluated by:

F=L,P/(L +L,) €)
The column axial force denoted by N (= N+ N_ ), the lateral resistance denoted by F,

and the lateral displacement denoted by 9, in the Tictitious structural system shall satisfy the
following geometrical relations:

N=N"cos0+F sin0 @
F=F cos®-N"sin0 5)
8=98 cosB+L,sin6 ©)

Displacement control for the transverse actuator and load control for the axial actuator are
adopted during the test procedure. Every time after the transverse actuator is driven in a bit by
bit manner, P, N*, § » and 0 are measured and used to determine the new axial load so that Egs.
(1) to (5) shall be satisfied. And then the command signal corresponding to the new axial load is
transmitted to the controller of the axial jack. So far as the loading is made in a quasi-static
manner, such a test control may be performed slowly and easily supervised even by a small

microcomputer.

Test specimens are hot-rolled H-shaped members, and their nominal cross-sectional
sizes are commonly H-150x150x7x10. The measured dimensions of the specimens and the
loading conditions are summarized in Table 1. Monotonic loading tests and cyclic loading test
were performed. Two kinds of monotonic loading were considered: one case is that the com—
pression force in the column increases according as the magnitude of the lateral load increases.
We call this loading case simply as '‘compression side' loading hereafter. The other case is that
the compression force decreases according as the magnitude of the lateral load increases. Simi~
larly, this loading case is referred as 'tension side' loading hereafter. Initial axial load, N, is
commonly set to 53.6 tons, 40 percent of the yield axial load. Cyclic loading tests were per—
formed according to the loading program shown in Fig. 5. The cases of the constant axial loads
are also tested for the comparison. The constant axial loads in the monotonic loading are set to
the peak axial loads (the minimum or the maximum) observed in the cases of varying axial
loads. The constant axial loads in the cyclic loading is identical to the initial axial load. The
results of the tension tests on the test pieces taken from the flange and the web are summarized
in Table 2, and the compression tests on stub—column specimens are summarized in Table 3.

3. TEST RESULTS

The lateral resistance vs. displacement curves observed in the monotonic loading tests are
shown in Figs. 6(a) and 7(a). The lateral resistance vs. displacement curves observed in the
cyclic loading tests are shown in Figs. 9§a§ and 10(a). Also, the end moment vs. axial load tra—
jectories are shown in Figs. 8(a) and 8(b). For every specimen, the local buckling failure is
commonly detected at the column end during the loading tests. It should be noted, however, that
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the deterioration of the lateral resistance are mostly caused by so—called P-A effect or the sec—
ondary moment due to the high axial load and the large displacement. The followings are read
from these figures:

The maximum lateral resistance observed in the 'compression side' loading is almost the
same with the maximum resistance detected in the corresponding case of constant axial load. On
the contrary, the maximum lateral resistance in the 'tension side' loading is about 15 % lower
than the resistance observed in the corresponding case of constant axial load. Possible explana—
tion about this difference is: the maximum lateral resistance in the 'compression side' loading is
limited by the P-A effect due to relatively high axial load. On the other hand, the maximum
lateral resistance in the 'tension side' loading is rather limited by the local buckling failure, which
seems to be initiated and brought up gradually before the maximum resistance is detected. In the
initial stage of the yielding in the 'tension side' loading, the column is subjected to higher axial
load and then more prone to the local buckling than the column under the corresponding con-
stant axial load.

The manners of the lateral resistance deterioration observed under the varying axial loads
are considerably different from those observed in the corresponding constant axial load cases,
and also they depend on whether the loading case is 'tension side' or 'compression side. While
the deterioration observed in the 'compression side' is less severe than that in the case of the
constant axial load, the lateral resistance in 'the tension side' compression drops abruptly and
severely.

Such a difference can be explained as follows: In the 'compression side' loading, (i) the
deterioration of the lateral resistance leads to, (ii) the decrease of the overturning in the structure
as well as the compression force in the column, and then (iii) the P-A effect diminishes. Such a |
converging cycle will act as a sort of moderator against the resistance deterioration. On the con-
trary in the 'tension side' loading, (i) the deterioration of the lateral resistance leads to, (ii) the
decrease of the overturning in the structure but the increase of the compression force in the
column, and then results in (iii) the increase of the P-A effect. Such an accelerating process
will induce a sudden drop of the lateral resistance and very brittle behaviors.

From the behaviors of the stress point, (M, N), shown in Fig. 8, one can imagine the
existence of the limiting surface or the yield surface in (M, N) space, and the dashed lines shown
in Fig. 8 are the approximated interaction formula between the fully plastic moment (bent about
strong axis of H-shaped cross—section) and the axial force. Since the dashed lines are drawn on
the basis of the initial yield stress, the actual stress point goes outside of these limits, that is, the
actual yield surface is inflated due to strain-hardening. It is also seen that the actual yield surface
is diminishing after some inflation, and this must be related to the local buckling failure.

4. ANALYSIS
(1) Simple Beam—column Model[6]

A steel beam-column cantilever is regarded herein as an assembly of two elements as
shown in Fig. 11: one is an elastic beam, and the other is an inelastic joint. In the following
analysis, nodes are located at the tips of these two elements. Geometrical non-linearity or P-A
effect is considered only for the nodal displacements by updating each element coordinate
system in the incremental analysis.

The inelastic joint consists of four axial springs and a shear panel as shown in Fig. 12. In
the presence of the stress transmission among the springs and the panel, each spring may carry
axial force varying along the joint length, but the axial force at the center is chosen as the repre—
sentative axial force of each spring.
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Two different skeleton curves are used for the tension-side and the compression-side
behaviors of each spring, respectively. The tension—side skeleton curve shall be arranged similar
to the uni-axial stress-strain curve of steel material, and the compression side skeleton curve
shall be arranged in consideration of the strength deterioration due to local buckling. Piecewise
linear models are adopted herein for the both side skeletons as shown in Fig. 13(a).

Two imaginary points termed 'target points' on the skeleton curves, one for each side, are
considered herein. These points are referred to determine unloading and reloading paths. Each
target point is set to the elastic—limit point as the initial state. When a loading beyond the elas-
tic-limit is made along one side skeleton with a certain amount of plastic displacement incre—
ment, the target point of the loading side moves together with the loading point, and at the same
time, the other side skeleton curve including the other target point shall be shifted to the loading
direction as much as W times the displacement increment. Such a loading procedure on the skele—
ton curve is illustrated in Fig. 13(b). If W is set to zero, neither hardening nor degrading occurs
during cyclic reversals within the past peak amplitudes. If W is set to one, the hysteresis includes
no softening due to the Bauschinger's effect. Actual behaviors of steel members are believed to
fall on the intermediate states between these two extremes.

Unloading and reloading paths are modeled as portions of the Ramberg-Osgood func-
tion, denoted by 6 = R_, (P). The parameters included in this function is determined to satisfy (i)
8y =R_, (Py), where the point (8,;, P,)) is the last unloading point, (ii) 8, = R_,, (P,), where the
point (8., Plﬂ is the target point on the skeleton curve in the unloading and reloading direction,
and (iii) d R, /dP (Py)=1 where K, is the initial elastic stiffness. These conditions are illus—
trated in Fig. 13?c). The tangent stiffness denoted by K'(=dP/dd) is derived from these condi-
tions as:

K =K K,/[K,+ K-K)|(P-P )PP ] (N
where K, = (P.~P)/(8,-6,) : )

(2) Results of the Analysis

The yield stress and the maximum tensile strength needed to arrange the tension~side
skeleton curve can be derived from the tension test results summarized in Table 1. As for the
compression-side skeleton curve, it is empirically recognized that the maximum moment capaci—
ty of the beam—column would be underestimated if the maximum stress(c_) derived from the
stub column tests were used as they were. This might be resulted from the difference of the
stress gradient in the beam—columns and the stub columns. Consequently, the parameters other
than the yield stress(0, ), the tensile strength(c,), and the length of the inelastic joint are adjusted
by trial and errors so that the monotonic curves simulated under constant axial loads totally
match with the corresponding test curves. The length of the inelastic joint is assumed herein to
be one—eighth of the column length. A set of model parameters arranged in such a manner is
numerated in Table 4.

The monotonic curves predicted by the set of model parameters are shown in Figs. 6(b)
and 7(b). The difference between the maximum resistance in the 'tension—side' loading case
and that in the corresponding constant axial load case can not be simulated in the analysis, as
shown in Figs. 7(a) and 7(b). The reason is that only a single set-of model parameters are adopt-
ed in the analysis. As described before, the maximum resistance in these two cases are limited by
the local buckling failure, and it is obvious that a single model of compression side skeleton
curve could never explain such a difference in the local buckling strength. However, other
aspects of the inelastic behaviors, such as the manner of the resistance deterioration and the
maximum resistance controlled by the P-A effect, are well simulated by the present model with a
single set of model parameters.
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The two parameters associated with the hysteresis model, ¥ and r, are assumed to be 0.8
and 5, respectively, and the analyses are performed for the cyclic loading cases. The results are
shown in Figs. 9(b) and 10(b). ‘Basic aspects of hysteresis behaviors, such as the shape of the
hysteresis loops and the maximum resistances in the both side loadings, are well simulated by the
present model. Especially in the case of the varying axial load, the simulated hysteresis loops at
each stage to the complete collapse fairly well agree with the test results.

5. CONCLUDING REMARKS

(1) H-shaped steel members are tested under uni-directional bending and a large amount of
axial load change as well. Each specimen is assumed to be a side column at the lowest story of a
tower—like high-rise building. Computer—controlled loading tests are performed, where the
sub-structuring techniques are used to determine the varying axial load to be applied to the
specimens. It is found that the deterioration of the lateral resistance resulted from such an intel-
ligent testing is considerably different from the result of the ordinary testing under constant axial
loads.

(2) A simplified constitutive modeling is also proposed for inelastic portions of steel beam-
columns. The monotonic and the cyclic loading test results under varying axial load can be well
simulated by the model with a single set of parameters so far as the parameters are calibrated to
match with the monotonic curve under the constant axial load.
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Table 1 Dimensions of Specimens and Loading Types

Loading B H t tw A I
Type (cm) (cm) (cm) (em) | (em®) (em*)
Mono | 15.046 | 15.295 | 1.048 | 0.644 | 40.037 | 1726.
Mono | 15.018 | 15.226 | 1.038 | 0.567 | 38.633 | 1679.
Cyclic| 15.053 | 15.258 | 1.022 | 0.617 | 38.921 | 1680.
Mono | 15.044 | 15.301 | 1.018 | 0.640 | 39.119 | 1689.
Mono | 15.071 | 15.307 | 1.023 | 0.653 | 39.495 | 1702.
Cyclic| 15.040 | 15.265 | 1.011 | 0.635 | 38.820 | 1670.

Axial load (ton)

53.6-73.2 (compression side)
73.2 (constant)

7.0-81.1 (varying)
53.6-17.2 (tension side)
17.2 (constant)

53.6 (constant)

(=) (=] (o] (=] (=] (=]
oo - o (-] oo <.

B: Width, H: Depth, t: Flange thickness, t_; Web thickness,
A: Cross—-sectmnal Area,I Moment of mcma

Table 2 Mechanical Properties derived from Tension Tests

Test A | p, P. | oy . Ew/E |0,/0. | 65 |6s/L
pieces | (en?) | (ton) | (tom) [(t/en®)| (t/cn?) (%) | (em) | (%)
fﬂange 3.813 12.32 19.10 3.23 5.01 1/60 64.4 4. 90 24.5
fﬂangc 3.871 12.46 19.16 3:22 4.95 1/56 65.1 4.90 24.5
F1ang£ 3.928 12.57 19. 64 3520 5.00 1/60 64.0 4. 70 23.5
Flange | 3.880 12. 45 19. 36 3,21 4.99 1/60 64.3 4.90 24.9%

Web 2.635 9.01 13.28 3742 5.04 1/60 67.9 5.30 26.5

‘Web 2.669 9.20 13.61 3:35 5.10 1/60 67.6 5.00 25.0

oy Yicld stress, O Maximum stress in tensmn, E: Elastic modulus,
E Initial stram—hardenmg modulus, 8: Elongation at breaking

Table 3 Results of Stub Column Tests

B H t. te [ A L N, Nn oy O a
{cm) {cm) (em) (em) | (cm?) (cm) (ton) (ton) |(t/em?®) |(t/cw®)
15.038 15. 237 0.968 0.650 | 38.76 45.00 133. 30 150. 00 3. 44 3.87
15.073 | 15.256 | 0.983 | 0.680 | 39.67 | 45.01 138.80 | 160.60 3.50 4.05

o,,: Maximum stress in compression
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Table 4 Model Parameters for Skelcton Curves

Spring No. g, O m g K, K. <K, K2 tKs
1. 4 3.8 4.2 5.0 540. 8 3.60 -2.70 3.60 0.00
2.3 3.3 4.2 5.0 652.1 4.35 -3.26 4.3% 0.00

Note: The length of the inelastic joint is kept 15 cm.
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