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§ 1. Introduction

Since the Second-Moment Method is establisched by Cornell,Lind and Ang
lots of probabilistic investigations on the effects of uncertainty
concerning the input ground motion have been studied{1), (2), (3),{4). In
recent years, studies have been carried out not only onthe effects of
uncertainty concerning the input ground motion, but alsoon the effects
of variability in material property(5), (6), (7), (8), (9).

Sues et al(5) introduced probabilistic concept into the structural
response by quantification of variability in loads and resistances
Additionally, the authors examined potential inaccuracies in assumptions
concerning hazard 4nalysis.This led to lifetime damage probability as an
assessment of structural safety. 0 Connor and Ellingwood(6) investigated
the statistics of the simple nonlinear systems subjected to seisnmic
excitation using numerical analysis. In their study, account was taken
of variations in earthquake ground motion as well as uncertainties in
structural properties such as mass, stiffness, damping and yield
displacement of the systenms. It was concluded that the variability in
structural properties had a decisive influence on the inelastic response

Kuwamura(7?) investigated the effect of variations of yield stress on
the ductility of steel frames. This stﬁhy léd to the conclusion that
steel can exhibit high ductility ratio, provided the ratio of yield
stress to tensile strength is low. The randomness in structural members’
yield strength on the structural systems' ductility was examined by

kuwamura and kato(8). The structural system considered was a six-
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story three span plane frame, designed based on the weakbeam-strong
column concept. The authors showed, utilizing standard Monte Carlo simul
ation, that the randomness in members’ yield strength has a significant
influence on the failure mechanism and consequently on the ductility
of the system, both for static and dynamic behaviour. In particular,a
high coefficient of variation of the members’ yield strength «causes a
higher risk of local failure. They concluded that the earthquake motion
randomness has much less effect on preventing the occurrence of the
dynamic overall failure mechanism than on the randomness in members’
yield strength when the coefficient of the yield strength is greater
than 2.5% to 5.0%. Alexopoulous, Elnashai and Chryssanthopoulos(9)
investigated the effect of random yield strength on seismic design para-
meters of steel frames. A simple portal frame was considered and design-
ed according to code characteristic values and verified by nonlinear
transient dynamic analysis.The influence of the yield stress variability
on several response parameter, including the degree of correlation betwe
en beam and column material properties, was assessed through a Monte
Carlo simulation study. The main conclusion from the investigation was
that random variability in yield strength and its degree of spatial
correlation with a particular structure have a significant effect on a
number of response parameters used in seismic design of steel frame, such
as load carrying capacity, energy absorption, and even for variation with
code-defined limits.

Next, discussions are briefly done on the methodology for the struc-
tural dynamic analysis with uncertainty factors.

Generally, uncertainty analysis in the dynamic response of structures
are devided into the following two kinds; one is the case in which
structural properties{mass,stiffness and damping) is deterministic, and
input is nondeterministic, and in which input ground motion is usually

modeled as white noise or nonwhite noise, and the other is the case



in which structural properties are random variables and input motion
is deterministic. There are mainly four methods for analyzing the former
case, namely (1) analytical method by differential equations (2) power
balance method (3) Equivalent linearization method and {(4) Monte Carlo
simulation.

On the other hand, there are two methods for analyzing the latter
problem. One is an expansion method by taylor series expansion about the
mean values, but it is effective only in case that the response value
is obtained in completely closed form with random variables. Anather is
perturbation method, which it is very familiar method as well as expan-
sion method. However, it is almost solely limited to linear problem except
for some nonlinear problems.

Generally, the variability of the resistance in structures depends on
the variability of material strength and section shape in structural
members. In this paper, only influence of the material strength on the
dynamic energy response is studied.

The objectives of this investigation are as follows
- To evaluate the statistics of energy response of structures consisted

of uncertainty materials subjected to earthquake excitation
-~ To investigate the effect of random variability 1in material property

on the probability of safety for structures

§ 2. Probabilistic Modelling for Hysteretic Restoring Force
of Structures Consisted of Uncertainty Materials
First of all, we should describe modelling stress-strain relationship
of mild steel. Under the monotonic loading, an experimental results show
that the uniaxial behavior, in its virgin state, isessentially linear
up to the yield point, and the yield plateau 1is followed by strain
hardening. To model exactly stress-strain relationship of steel member

with such a material characteristics is not only hard, but also unprac-



tical treatment. The bilinear model shown in Fig.l allows the strain
hardening and it is one of the acceptable models in the sense of engi-
neering, though it is not exactly consistent with the experimentally
obtained material behavior. Here, we have adopted the bilinear model.

The bilinear model is described by two material parameters, ie yield
stress and strain hardening, which are random variables. Yield stress
variability has been extensively studied in the UK(11) and Japan(12). By
theses studies, two conclusions that a normal distribution can be used
for describing a random yield stress variability(12) and a lognormal
distribution too is avaiable{(l11), have been reached. In this study, ve
have chosen the normal distribution because of its simplicity and used a
mean yield stress of 2.8t/cm? and a coefficient of variation of 0.069(11).

On the other hand, random variability of strain hardening has so rarely
been studied, that there is no information on the distribution of strain
hardening. Hence,in this initial study, an uniform distribution is used
to account for the random variation of strain hardening.

The probabilistic distribution of material models used are shown below.

o y= N( 2.8t/cm2,0.193t/cn?) (2-1)
g = U(0.007E, 0.012E)
vhere o y:yield stress g :strain hardening
N(X,Y) :normal distribution{X:expectation, Y:standard deviation)
U(X,Y) :uniform distribution(X:upper, Y:lower)
E : modulus of elasticity

The full plastic bending moment Mp, is calculated by
Mp=Zp0'y (2‘2)
where Zp : plastic section modulus
and from Fig.3, the following equation is obtained.
2

Qy= —H—Zpay (2-3)

where Qy : yield shear force

The shear force in Fig.3 stands for the restoring force of the struc-



ture. As a probabilistic hysteretic model of stress-strain relationship
is described by bilinear model, and the model of hysteretic restoring
force is expressed by the same bilinear model with two random variables,
ie yield force and stiffness after yield as shown in Fig.2.

The statistics of random variable in the probabilistic hysteretic

restoring force model is as follows.
2
E[Qy:}:'ﬁ_ ZPE[O'y]

C.0.V. [Qy] =C.0.V. [ o]
Elel =E(x] (2-4)
c.0.V. [al =C.0.V. (]
where E [X] : expectation of X
C.0.V. [X] : coefficient of variation of X
Eq. {2-4) are approximate evaluation formulas to compute the statistics
of parameters including in the restoring force model from the statistics

of yield stress and strain hardening of uncertainty steel materials.

§ 3. Frequency Response Analysis of Inelastic MDF Systenm
Subjeted to. Earthquake Excitation

It is a key point to define how to describe the hysteretic restoring
force of nonlinear term in the dynamic equation, in finding the
analytical solution of elasto-plastic response analysis for the struc-
tures with uncertainty materials. Suzuki and Minai(13) carried out
studies to get an analytical solution for structures under the nondeter-
ministic excitation, expressing the restoring force by an incremental
force form written in differential equation.

An analytical approach tried here is based on the approximate method
expressed the hysteretic restoring force by a first term of Fourie
series expansion. The dynamic equation in time domain for jth-story in

the nth-story frame can be written in the following form.



n k n
meZXa +D X (X, ) = -Zmuy(t) (3-1)
k=j £=1 k=j

wvhere m ; : mass of jth-story

K;:stiffness of jth-story
Ds: 2hK;i/ w;
h : viscous damping , @ 1: lst natural frequency
F; (X3 t) : hysteretic restoring force with deterministic
value Ej, ;J
X j: relative displacement, ¥ (t): deterministic input
First of all, we focus on getting the resolution of Eq. (3-1), in case
of harmonic exciation input 'Y.((u)exp(iwt) with @ — component included
in earthquake exciation. If we adopt the above mentioned approximation
method by Fourier series expansion and assumeX{w)exp(iwt)as the rela-
tive displacement of jth-story , the bilinear restoring force model is
ex-pressed by ellipse hysteretic characteristic as shown in Eq. (3-2).

(Complex coordinate system is adopted in order to simplify the computing

by FFT)
Fy (X, t) =X(w) (cy—1isy expliot) (3-2)
where i2=-1
K vx 4
Cy T F,(X;,0t) coswtd(wt)
n'X,-(w) 0

K. in
s,-=——’——J- F;i(Xs,ot)sinwtd(wt)
7 X () 0

Cc3,S 3 in case of bilinear model

e i )=5(0,-Lsin16,) 1-G )4k Es oo "

ci(U) =Ky e S, s

SJ(GJ)=_%(1_&j) sin2@8; = eeeees G,>1

S:(uy) =0 TR 3.1

8 ; =cos"(1-~i) ...... :1,->1
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QYJ)

Qs
E'J : some fixed value of random variable Qy;, @ ;

By substituting X;{w)exp(iwt) and complex stiffness Eq. (3-2) into
Eq. (3-1), Eq. (3-1) will be transformed to linear equation in frequency

domain. As a result, Eq. (8-1)is rewitten in matrix form as follows.

[K (0. Qys a5 cs (us),s5(ay). D)1 (& = (¥}  (3-3)

where (X} : {X1(w).X2(w), - Xn(w)} T
n n -
(V) = (Epwes Eog nma) 7Y (@)

% (w) : Fourier Transform of fit)
K (w) : stiffness matrix ofw -component in frequency domain
EQ. (3-3) is linear equation with complex function. In case of harmonic

excitation input, we are able to get the relative displacementX 5 as the
resolution of Eq. (3-3). However, in case of earthquake exciation input,
Wwe are not able to get the relative displacement in a unique meaning due
to the various frequency component included in an earthquake exciation.
Therefore, in this paper, we assume that ::j is regarded as parameters in
order to evaluate the equivalent stiffness and the equivalent damping
for hysteretic structures. If :Ij may be evaluated in some way, the
coefficient in Eq. (3-3) becomes known variables, hence, we can resolve
Eq. (3-3) for the earthquake excitation. Namely, the frequency analysis
for hysteretic structures is carried out by superposing each frequency
response of the structure forced by harmonic excitation with a frequency

component included in an earthquake excitation. The method to

~
define u ; is shown in the next section.



8 4. An Expression Equation of Tatal Energy Input for Structures

First of all, we will show the method to express the total energy
input for structures in frequency domain.

An earthquake total energy input of W(t) jth-story in n-story framed

structures in time domain is given by
n t .
W:(t)=—zm;j V(r)Xs(z)dz (4-1)
i=j 0

where t: duration time
Since the velosity response obtained from Eq. (83-3) is described
in frequeney domain, it is convenient to convert Eq. (4-1) into frequency
domain. Therefore, we replace fixed valueslayj,'zj in Eq.(3-2) by
random variables Qyy, a3 and convert Eq. (4-1) into frequency domain,
according to a general form of Parseval's formula(l4), (16). Then Eq. (4-1)

is rewritten as

@
- - -* ~
W;(t)= - Tl ™ ReaIUY(w)XJ(w,le,al,-“,u;)dw} (4-2)
i=j -
where ¥ : conjugate complex

As we have described an analytical closed form of total energy input
with random variables as shown in Eq. (4-2), the statistics of total
energy input is got by using the probabilistic procedures.

Next, we will show the method to get the unknown values :;j . Ve
assume that the variability of energy response of the structures with
random hysteretic restoring force due to uncertainty material can be
measured by the deviation from the energy response obtained under the
condition that the structures with restoring force represented by mean
values of random variables subjected to deterministic earthquake exci-
tation. ;'j means the displacement amplitude in the case of harmonic ex-
citation input with one frequency component, but E’j does not have a

clear physical meaning in the case of earthquake excitation input with



lots of frequency components. So, in this study, we assume that :;J is
so decided that Eq. (4-3) has specifided values. According to the first
order approximation method, it is natural that ;’j is decided by the
condition that energy respone of structures with restoring force re-
presented by mean values of random variables as shown in Eq. (4-3) has

specified values.

o

- n _
W;i(t)= - Z—iz“z m ReaI{JY(w)Xf(w;QVI,al,.."u])dm} (4-3)
i=j ™
where i :mean value of X

If the numerical response analysis for structures with restoring force
represented by mean values of random variables is acceptable only once,
we can Tregard the total energy input §§Js obtained from the numerical
analysis as specified values. Consequently, we can get :;5 from the
condition that 665 in Eq.(4-3) is equal to 6635 .The iterative procedure
is needed in ébmputing it. Here, the following equation is used

| Wis— W, | S0.005 Q35K (4-4)

Subsituting 118 obtained from computing Eq. (4-4) into Eq. (3-2),we get

X ;=19 2= (4-5)

~0 ~
where uy : known value of u

then, & 3 in Eq. (3-2) is updated as follows

os=cos-1|1- — f— ] (4-6)
ud- Qys/ Qs

As Eq{3-3) is defined as the function with the closed form including
only random variables, the statistics of total energy input is obtained
by using probabilistic procedures. In case ofu;- Q yj//a y3= 1, the

dynamic response of structures becomes elastic



§ 5. The Statistics of Energy Response of Structures
The energy input in Eq.(4-1) is the total energy input of structures
under earthquake loading. Generally, the total energy input is divided

into three terms as

~

VVJ=WeJ+\77dJ+VVpJ (5-1)
where ggej(t) : the sum of the nondimensional energy input
absorbed by elastic vibration in jth-story
ﬁadj(t) : the sum of the nondimensional energy input
absorbed by viscous damping in jth-story
€6p5<t) : the sum of the nondimensional energy input
absorbed by cumulative plastic deformation in jth-story

All terms in Eq. (5-1) are random variables. The statistics ofW; in Eq.

(5-1) is as follows

® ® ]
~ an e L 3 ~0
E[W;]= “““Z m; J‘J' Rea I{JY((D)X&(@,QN,G’“"‘,Us)dw}
I,
17w -
B (Qu, @) dQuda (5-2)
QVJ

2 {n 2 @ ® ® 2
BT ) mf [ | Real{f’\;(wk’?(w,czw,al,---,G",)dw}
4r® |, ,
153

-

1
Qs

P(Qu, e )dQuida -

V [Wj) =E [W3) - E? (W]
where p(Qyl, @ l-+-):joint probability density function of Qyi, al---
E[X],B[¥4, V[X]:expectation, mean square and variance of X
We are able to get the exact statistics of §6J . However, to get exactly
the statistics Ofiﬁpj is extremely difficult. So, we will propose the

approximate method to speculate the statistics ofWrpsdirectly from Eq. (5



-1) by using the numerical results for structures with restoring force

represented by mean values of random variables. The expectation of Eq.
(5-1) is
E [W3] =E [We3] +E [Was] + E [Wpy] (5-3)

The mean square value of the difference between Eq. (5-1) and Eq. (5-3)

gives approximately

V IWsl &V [Wesl +V [Was] + V [Wei] (5-4)
Eq. (5-4) includes the assumption that each correlation coefficient
between random variables WJ‘E[WeJ],de.'E[de} and VVPYE[W”]is
small. Since the left side of Eq. (5-3) and Eq. (5-4) are known, it is
possible to speculate approximately the stativstics of the right sides

of Eq.(5-3)and Eq. (5-4) as follows.

E [Wes) =r3E [W)] (5-5)

where r'j—':ijs/w,js, ijs, W;s:the nond'imernsional total energy
input and nondimensional energy input absorbed by cumulative
plastic deformation for the structures with restoring

force represented by mean values of random variables

~/ ~s
The ratio of V. [Wp] toV [W ;] is unknown either, and we can not get it
from numerical aralysis. If it is assumed that the above-mensioned ratio

is available for Eq. (5-4) as well, V [ij] is given as the following.

V [Wes] =13V [W;5] (5-6)
The reasonableness of such an assumption will be investigated by

comparision between analytical results and Monte Carlo Simulation.



8§ 6, First Order Approximation of Energy Response

Eq. (5-2) in the previous section is the expression to evaluate exactly
the energy input VVJ-. It is very hard to compute the value in case of
multi-degree of freedom system because of the execution of multi-inte-
gral computation, thougth it is not impossible. Therefore, a simple way
to evaluate it is required.

The energy input defined by Eq. (5-2) includes the random variables
Qyy @ 5{(j=1,+++,n). As we can regard Eq. (5-2) as a function with random
variables, the approximate method by Taylor expansion is available.

The first order approximation of Eq. (5-2) gives
| n
E[Wj]ﬁ —-z—n—z—jn,r}

n 2 In In

1 al; &I
\V o AT R A -
[(W;] 4”2{2111:} Z 3Ze 3Zs O0V[Z1,Z\] (6-1)
i=j =1 k=1
o
.. X o ~0
where I3 = Real JY(w)X,(w,Zl,Zg,---,u,)doo,
-~

Zx :random variable (Z1=Qyq,Zo=a 1, ***)
COV(Z ¢, Zx) :Covariance function of Zx
To evaluate Eq. (6-1) and Eq. (6-2), the differential of the velosity
component- Xj about Zyx is needed. Differentiating Eq. (3-3) about Zg

directly and subsituting it into Eq.(3-3) gives

. %
X ] d [K
S X conje {1000 2L 10 v (5-2)
dZx "
By using Eq. (6-1) and Eq. (6-2), we can get the first order approxima-

tion for the statistics of total energy input. The nondimensional total
energy input Wj obtained by first order approximation is as follows.

E (W3] Ky

6-3
E?2 [Qyy] (6-3)

E [W,]



C.0.V. [v?z-]: A/ C.0.V.[W;J+4-C.0.V.[Qys]

The statistics of Wy is
E (Wes] =1 3E [Wy]

C.0.V. [Wy] = —2=-C.0.V. [W, ] (6-4)

AT

§ 7. Comparion between Analytical Results and Monte Calro Simulation

So far we have described the way to evaluate analytically the energy
response of the structures with the uncertainty hysteretic restoring
force subjected to earthquake exciation. We proposed two analytical
methods, one is the exact method as shown in Eq. (§-2), and the other is
first order approximation method as shown in Eqa. (6-1).

In this section, we investigate the comparision between analytical
results and simulation results. The following two model have been chosen
to compare the results
(1) Model A (hysteretic restoring force model : Fig.5)

E[Qy11=36.6t, C.0.V.[Qys]=0.0869

K(stiffness)=20.5t/cm ,h(damping)=2%

(2) Model B (hysteretic restoring force model : Fig.§)
Ele 11=0.0095, C.0.V.[a 11=0.149, p (Qy1, @ 1)=0(correlation coefficient)
other values are the same as those in Model A

T(Period): 0.4sec, 0.5sec

Earthquake motion:El Centro Earthquake(max.&f(t)=3465a1,duration=205ec)

The Tesults are shown in Tables 1 and 2. Method (1) stands for the
results by the exact method, and Method(2) stands for the results by
the first order approximation. Simulations show the results obtained by
100 trials. The results by method(l) is very close to the simulation
results and good consistence is obtained. However, from the point of
view of practical application, this method will be limited to SDOF system

on account of increase of computing time and complicated computing



techniques due to its being multi-integral.The results by method(2) show
generally small values about 3% for mean and about 20% for coefficient
of 'variation. Although coefficient of variation by Method(2) is pretty
small, this method would be acceptable in the sense of engineering, from
the point of view that computing is very easy. Because of the numerical
analysis of energy response of structures with mean valuesonce, good
consistence for mean value of energy response is got.

From the above results,it is concluded that the total input energy for
structures under earthquake motion will be approximately obtained
by superposing each energy input for linear system with restoring force
Eq. (3-2) forced by harmonic excitation with a frequency component
included in an earthquake ground motion.

Next, we will investigate the reasonableness of assumption used in Eq

(5-6). We introduce the following two parameters.

m
Z Wores/m
J

( pls.; ZWmh/m /]Tl
=] i=]

- (1-1)

~ 2
g 183 -ggls( /m) /m

where Wig;: nondimentional total energy input obtained by
simulation

r=

m A
Z Wlsj/m
J=l1

aTs
n
‘-'MEL'MB

Wpiss: nondimensional energy input absorbed by cumulative

plastic deformation obtained by simulation

Fig.7 stands for the relationship between ratio T of r and E&is,in
which A is results for C.0.V.[Qy1]1=0.069, o is results for C.0.V.[Qy1]
=0, 138. The ratio shows very close to 1. Therefore the assumption used
in Bq. (5~-6)is reasonable.

Fig.8 shows the probability density function of 261 ,§6p1 for model A.

The density function is approximated by Gamma distribution. The real



lines show results obtained by Method(1), and the broken lines show

results by Method(2).

The influence of the shift of the vibration centor due to inelastic
displacement in hysteretic structures on the velosity response is very
small(20). Therefore, in this paper we have evaluated the energy input
by the equivalent linear system , neglecting that influence. In the case
that yield level of structures -is considerably small in comparison with
the acceleration level of earthquake motion, we can not get the equi-
valent linear system, but from the comparison between the analytical
results and simulation results, -we can get the results for acceleration
level bringing about the ductility foctor 8-9 in structures with period

0.2sec, and the ductility factor 6-7 in structures with period 0. 5sec.

§ 8. Probability of Safety for the Structures with
Uncertainty Hysteretic Restoring Force
The unexpected low yield strength due to uncertainty material variabi-
lity will cause remarkable effects on the probability of safety of the
structures during the response time of the structures subjected to
ear thquake excitation. Therefore, it is very important to clarify
quantitatively the effects of the uncertainty material variability on
the probability of safety.
Generally, the damage of structures is in proportion to the quantity
of the energy input absorbed by cumulative plastic deformation and
there is a strong relationship between +the energy input absorbed by
cunmulative plastic deformation and the failure or damage of structures.
Based on the above-mentioned comcept concerning the failure of the
structures, we define the criterion for the probability of safety in
jth-story of n-story framed structures as
Ry (t) =Py [We>Wpy (t) ] (8-1)

where R;(t): the probability of safety in jth-story of n-story



frame structures during th time(0,t)
iﬁn: the cumulative plastic absorption capacity for
structures (random variable)

This problem is well-known as the first-passage problem, and it is
extremely difficult to compute exactly the probability distribution
function of the probability density fuction of the first-passage time
Therefore, studies on the approximate analytical solution of the first
passage problem have been carried out(13), (19). All of them are studied
concerning the evaluation of the probability of safety for the struc-
tures subjected to nondeterministic excitation, ie white noise or non-
white noise and so on.

In this study, ve show an approximate analytical method to get the
probability of safety in case that the structures with uncertainty
restoring force is subjected to deterministic excitation, ie EL Centro
Eartgquake. The probability of safety for such a structure is obtained
as a function of the random variables. Hence, first of all, we define
the conditional hazard function on the condition that all of random

variables take on some values(15)

1 IR (z|Qui, a4y, +°)

AszlQui v, or0)= - TR TRD) dT

(8-2)

where Rj{(t | Qy1, @ 1, +++) : Conditional probability of safety on the
condition that random variable Qyq1, @ 1,***, take on some values
at the duration time (0, v )

L s(t | Qg1, @1, +--)dt : probability which Wys(t) of jth-story

exceeds the cumulative plastic deformation capacity gﬁg at the
time (v, 7 +dt ) under the condition that random variables
take on some values

Then, if A ;5 is small, the probability of safety structures during the

time (0,t) is given as



—J:\j(r)dr
R;(t) = e ° (8-3)

where A(z)=E[--E[A;()|Qy, a1, -]]

According to the heuristic assumtion({(15), we can get the expectation

of Eq. (8-3)

4]
f”.jBRs(tle,al,-") 0 (Que e, ) dQy, @,
-0 3z

Ai(z)= - " (8-4)
f“'J‘RJ(Z‘[QVI’alr”.) p(QYl;aly”')detlaly'.'
—0

Substituting Eq. (8-2) into Eq. (8-4) gives

0
.[”'J‘Ai(tlel;a\y"')Rl(T'leUa\;"')p(QY"a‘v“')dQV‘?a"“'

Ailr) = @
f"'fRi(t]QVl;aly"') pQe, e, ) dQue, 0,00
-m .

(8-5)

According to Bayes theorem, the following equation is obtained.

R y1s [E vi, R
J(rl 1, & )p(Q t, @1 ) - p(Qﬂ,al,"'lt) (8_6)

0
f"'fRs(f|Qvt,at."') p@yi, i, )dQe, i,
-0

where p (Qyq, @ q,--+| ©) : joint density function of Qyq, @ 1, -~
in residnal strength after response time ©

After all, the probability of safety for the structures with uncertainty

hysteretic restoring force is given

—fx\j(r)dt
RJ(t) = e °
vhere
@
/\J(Z)zI_(;"J-/\j(tloytrah"')P(Qy|,an"'l7:)denan"' (8-17)

Eq. (8-7) is almost the exact expression for the probability of safety.



However, it is very difficult to evaluate exactly Eq. (8-7). Hence, we
introduce an approximate concept as follows. In a denominator of Eq. (8-
5), we assume that conditional probability of safety R;(t | Qu1, @ 1, +*+)
during time(0, ¢ ) is approximated by the probability of safety at the

time 7 ,then Rs(t | Qy¢, @1, *+>+) becomes

Ri(z| Quua, ) 21 - ) Fe WP, (W, 7| Qyi,ay,-:) dW (8-8)
o WR WPJ

where FWR(W) : probability distribution of W

PW”(W,'CI Qyi1,°*) : probability density fuction ofWe; on the condition

that Qyq1, @ 1, -+ take on some values
It is an approximte method similar to Markov's approximation. When
Qy1, 2 ¢, +++(j=1,+++,n) take deterministic values, the cumulative plastic

deformation Wpj takes constant value at the response time . Hence,

Py (W,z| Qyi,+*) is given
¥es

Py, (W, z| Qyi,v-0)= 8(W(Z) - Wes) (8-9)

where 6 (w) : delta function
%L (Qyq, @ 1.°:-) :energy input absorbed by cumulative plastic
deformation at the response time t on the condition that
Qy1, @ 1, *++ take some values

Substituing Eq(8-9) into Eq. (8-8) gives

Ri(e| Quiyay, o) = 1= Fy (Wey) (8-10)

The probability of safety Ry(t) will be written in the form.

-A;5(t)
R;(t) = e (8-11)

f J By (o t) P(Qus e, ) dQudan
where As(t)=

IJ. IFWRWPJ7t p(QV"al’"')deldal"



Kuwamura ,Galanbos(17) have evaluated approximately the probability of
failure for maximum energy input which will be expected at the site of
the building during lifetime, in case of using similar reliability ecri-
terion. EBq.(8-11) has merits that the probability of safety is directly
evaluated from the probability distribution of 569 and the probability
density function of random variable without <computing the probability
density function of energy response gﬁpj. If there is a variability of
energy input due to uncertainty about earthquake ground motion, it will
be possible to evaluate directly from Eq. (8-12) by regarding §§$J as

parameters including the effect of them.

§ 9. Parameter studies
In this section, parameter studies are carried out by using the Method
(2). The structural models are 4 cases as follows.
(1) Case S-1 (SDOF system, restoring force:Fig.6)
n=0.1tsec?/cm, h=2%
E[a 41=0.0095, C.0.V.[a 1]=0.149
For T=0.lsec - 0.2sec, E[Qy1]1=36.4t, C.0.V.[Qys]1=0.069
For T=0.3sec -~ 0.8sec, E[Qy1]1=28.0t, C.0.V.[Qy1]1=0.069
(2) Case S-2 (SDOF system, restoring force:Fig.#6)
n=0.1tsec?/cm, h=2%
E{a 11=0.0095, C.0.V.[a 1]1=0.149
For T=0.lsec - 0.2sec, E[Qy1]=36.4t, C.0.V.[Qy11=0.138
For T=0.3sec - 0.8sec, E[Qy1]=28.0t, C.0.V.[Qy1]=0.138
(3) Case T-1 (TDOF system, restoring force(lst fr.,2nd fr.):Fig.6)
m1=0.1tsec?/cm, mp=0.075tsec?/cm, K1=Ka, h=2%
Ela 11=Ela 21=0.0095, C.0.V.[a 1]=C.0.V.[a 21=0.149, p {(a 1, @ 2)=0
For T=0.lsec - 8.3sec(lst period)
EfQy1]=54.6t, E[Qy2]=33.6t, C.0.V.[Qy11=C.0.V.[Qy2]1=0.069

o (le, Qy2)=0



For T=0.4sec - 0.8sec(lst period)
E[Qy1]=86.6t, E[Qy21=22.4t, C.0.V.[Qy41]=C.0.V. [Qy2]=0.0869,
o (Qy1,Qy2)=0

(4) Case T-2 (TDOF system, restoring force(lst fr.,2nd fr.):Fig.6)

o (Qy1,Qy2)=0.7, Other values are the same as those of Case T-1
Earthquake motion : EL Centro earthquake

Ductility factors, maximum and pernament displacement, energy absorption,
etc have been identified as important response parameters in the evalua-
tion of structural performance under earthquake loading. In this study
we will focus on energy absorption from among the above-mentioned para-
meters. Therefore, the following two energy parameters are considered.

(1) total energy input for structures under earthquake 10ading(§§;)

(2) the sum of the energy input absorbed by cumulative plastic

deformation for structures under earthquake loading(gﬁpj)

Fig.9 shows the results in Case S-1. The mean value shows a little
smaller value than simulation results as well as the outcome shown in
Tables 1 and 2. The difference is within about 5% except 11% in T=0. lsec
and coefficient of variation shows a small value a little over 20% on
average. Fig. 10 shows the results in Case S-2. The differences between
analytical results and simulation results become larger. The analytical
results show about 10% small value for the mean and about 30%-40% small
value for coefficient of variation. The coefficient of variation of ﬁﬁpj
became a little over 3 times as large as that of yield force in the
structures from the results in Figs.9 and 10. In this way, the first
order approximation brings on a considerable underestimated results in
case of the big variability of yield force. Therefore, we have to notice
for the application of the first order approximation for uncertainty
analysis of the structures with the big variability of yield force.
Fig.11 and. Fig.12 show the results for two degree of freedom systenm.

Fig.11 stands for correlation coefficient p (Qy1,Qy2)=0.0 and Fig.12 for



o (Qy1. Qy2)=0.7. To analyze two DOF system, it is necessary to carry out
iterative computing with two unknown variables :;1,:;2.The total energy
input in the part of lst-story of the 2nd-story frame structures get to
large, and the total energy input in the part of 2nd-story get to small.
So, unknown variable :IQ was smaller than 1 except 1in the case of
T=0.2sec and 0.3sec. Hence, we could not carry out the exact iterative

computing. However, as the total energy input in the part of 2nd-story

is small and close to Wos obtained by simulation, we approximately
regard this value as the results got from Eg. (4-4). It is one of
the demerits for the proposed method , but it will be dissolved

by using a weight fuction

1 (:;1) instead of :;1. The mean values in Figs.11 and 12 show smaller
values than simulation as well as SDF system.
The difference is about 5% smaller except in the case of T=0.1lsec and
the coefficient of variation shows about 20%-100% small value. We could
not analytically clarify the effect of cor;elation between Qyq1 and Qy2
on total energy input for structures because of the above-mensioned
reason. But we could get the following results from simulation. The mean
of ﬁ}p1 in p (Qy1,Qy2)=0.7 shows about 3% large value in comparison with
the value in p (Qy1,Qy2)=0.0 . On the contrary, the coefficient of
variation of §§p1 in case of p (Qy1,Qy2)= 0.7 shows about 6% small in
comparision with the value in p (Qy1,Qy2)=0.0

Fig.13 shows the time history of §§p1 for the structures with
deterministic elasto-plastic restoring force without uncertainty factor.
1f there is no variability of yield force in the structures, the

structures will be completely assured for larger cumulative plastic

absorption capacity than the value expected for structures. However, if
there is a variability of yield force, the safety of structures is not
assured.

Fig.14 shows the effect of variability of yield force in the restoring



force on the probability of safety for structures. Fig.14{a) shows the
effect of mean value E[%ﬁn] on the probability of safety R{t) in case

of C.0.V.{Qy1]1=0.069 and C.O.V.[§6R]=0.069, and Fig.14(b) shows the

effect of mean value on it in C.0.7.[Qy1]=0.138 and C.0.V.[Wgl=0.138,

in vhich normal distribution 1is assumed for describing the randonm
cumulative plastic absorption capacity.The figure shows that the mean of
cumulative plastic deformation capacity is reqiured about 1.5 times of
§§p1in order to assure the probability of safety of over 95% in case of
C.0.V.[Qy11=0.069 and C.0.V.[Wg]=0.069. The effect of variability in
yield force on the probability of safety, in which Eq. (8-1) is used as

a safety criterion for structures, is remarkably large

§. 10 Conclusions

The analytical approach to clarify thHe effect of uncertainty hystere-
tic restoring force on energy response for structures under earthquake
loadfng have been investigated . The results obtained in this study are
summarized as follows.

(1) The studies on the variability of dynamic response for
structures with random hysteretic restoring force have been carried out
by numerical computing method based on Monte Carlo simulation. However,
it 1is possible to evaluate analytically the variability of energy
respone for structures with random hystertetic restoring force by
executing once a deterministic numerical analysis for structures with
restoring force represented by mean values of random variables.

(2) The total energy input for structufes;under earthquake loading will
be approximately obtained by superposing each energy input for linear
system with restoring force Eq. (3-2) forced by harmonic excitation with
a frequency component including in an earthquake excitation.

(3) The coefficient of variation for energy input absorbed by cumula-



tive plastic deformation in structures with restoring force becomes a
little over 3 times as large as that of yield force.

(4) The effect of hysteretic restoring force with variability in yield
force on the probability of safety is remarkably large. The mean of
cumulative plastic deformation capacity will be required about 1.5 times
of the value to be expected under earthquake loading, in order to assure
the probability of safety of over 95% for C.0.V.{Qy1]1=0.069 and
C.0.V. [Wg1=0.069.

(5) Finally, for the case of two DOF system, we could not carry out the
exact iterative computation. This problem will be dissolved by using
a weight function, which is one of the further research concerning this
study.
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W| ¥or [ w&
mean ¢.0.V.” mean C.O0.V. mean c¢.0.V. mean C.0.V.
Method (1) 6.37 0.180 3,78 0.233 Method (1) }6.33 0.181 3.78 0.235
Method (2) 6.22 0.143 3.70 0.1856 Method (2) [6.23 0.143 3.68 0.186
Simulation{ 6.36 0.157 3.81 0.205 simulation|6.36 0.157 3.81 0.204
(T=0. 4sec) (T=0. 4sec)
Wl WPI Wl WPI :
mean c¢.0.V. mean C.0.V. mean C€.o0.V. mean ¢.0.V.
Method (1) |17.88 0.175 14.15 ©0.197 Method (1) |L7.87 G.176 14.11 0.198
Methoh(2) |17.47 0.141 13.83 0.158 Method (2) |17.49 0.140 13.81 0.158
Simulaton [18.07 0.185 14. 35 0.197‘ Simulation|i7.95 0.186 14.23 0.199
(T=0. 5sec) (T=0. 5s5ec)
# 1 Comparision between analytical results 2 2 Comparision between analytical results
and Monte Carlo Simulation(Model 4) and Monte Carlo Simulation (Model B)
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