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1. INTRODUCTION

To establish the ultimate safety of structures to earthquake load-
ing, often a huge number of numerical response simulation need to be
carried out under an extensive set of earthquake motions considering
various structural parameters. Analytical models of structures for such
simulation are better to be simplified as much as possible but should
not mneglect essential natures of structural behaviors over elastic and
inelastic ranges. Especially for steel frames, such as yielding,
strain-hardening, Bauschinger's effect, local buckling, P-—A effect,
and so on, should be considered appropriately in the model construction.

In this paper, an analytical model termed 'multi-spring joint' is
presented for the inelastic behaviors of steel members subject to uni-
axial bending and axial loading. Similar modeling was proposed by Lai
[ 1] for concrete members subject to bi-axial bending. Additionally, a
hysteresis rule suitable to deal with inelastic cyclic behaviors of
steel members including local buckling is proposed. After model parame-
ters are calibrated to match with the results of the monotonic loading
tests, which were carried out on H-shaped members with various
width~to-thickness ratios, the validity of the model when it is used in
the response analysis is checked through the comparison with the results
of on-line response tests under earthquake loading.

2, MULTI-SPRING JOINT MODEL

It is assumed that a steel beam~column member can be divided into
two kinds of portions as shown in Fig. 1: one is an elastic beam member
and others are multi~spring inelastic joints. The member stiffness
matrix for the elastic beam member can be derived on the basis of the
infinitesimal deformation. Geometrical non-linearity is considered only
for the displaced nodal positions at each stage in the incremental
analysis to trace the equilibrium of a whole structure, while the sec~
ondary effects due to internal member deformation are ignored.

The length of the multi-spring joint denoted by L ; is assumed to
be constant at each stage in the analysis, and its appropriate length
depends on the size of the inelastic zone anticipated in each problem.
The force and displacement vectors at the joint ends are defined as:

T (1)

(f}
{d} = ( dyi, dysi, @4, duy, dys, 6507 (2)

( fxi; fyi; mi, ij; fvj» mi)

where the components of these vectors are defined in Fig. 2.
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The multi-spring joint consists of four bar-springs and a shear
panel. Each bar-spring is located in parallel at the distance of 1
from the center axis and connected to the both ends of the joint. Each
bar-spring may carry axial force varying along its length as shown in
Fig. 3, and the value at the middle point is chosen to represent the
magnitude of the axial force in each bar-spring. Internal force and
deformation vectors in the joint are defined as:

{p} (p]; P2 P33 P4 9 )T (3)

{a} = ( 61; 82, 83, 84, v )T (4)

where p ,: axial force carried by the k-th bar-spring at its middle point
q : shear force carried by shear panel
S ¢ axial deformation of the k-th bar-spring
v ¢ shear deformation of shear panel

The equilibrium equation and the compatibility equation for the
joint are written as:

{f} =I[C] {p} (5)
{g} =[C]{d} (6)

where [ C] is the connectivity matrix between the joint-end forces and
the internal forces in the joint:

-1 -1 -1 -1 0
0] 0 0 0 1
T rs s Y, O-SLJ (7)
Cl=1 1 1 1 1 o0
0 0 0 0 -1
-ry —%Yro, —Y3 —1Iy4 _O-BLJ J

The relation between the force and displacement increments at the
joint ends is written as:

(At} =[C][k*] [C]f:{;Ad} (8)

where [ K *] is a diagonal stiffness matrix. Tangent stiffness of each
bar-spring or shear panel is assigned to the diagonal element in this
matrix. Such tangent stiffness is determined in accordance with the
hysteresis rule, which is described in Section 3.

3. HYSTERESIS RULE FOR INELASTIC SPRING

(i) Skeleton Curves

Different gkeleton curves are assigned to the tension side and the
compression side behaviors of each bar-spring, respectively. The
tension-side skeleton curve can be modeled so that its shape Dbecomes
similar to the uni-axial stress-strain curve of steel material. The
compression-side skeleton curve shall be modeled so that it includes a
negative-slope portion due to local buckling failure.
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A piecewise-linear curve is used herein for the both side skeleton
curves as shown in Fig. 4(a). The tension-side skeleton curve 1is
composed of three lines, (1) elastic range, (2t) strain-hardening range
and (3t) tensile strength level. The compression-side skeleton curve 1is
also composed of three lines, (1) elastic range, (2c¢) strain-hardening
range, and (3c) negative~slope range. In the case of a non-compact
section fragile to local buckling, the strain-hardening range in the
compression side might be omitted.

(ii) Shift of Skeleton Curves

Two points termed 'target points' on the skeleton curves, one for
each side, are introduced herein. These points are referred to determine
the curve shapes during cyclic reversals. The elastic-limit points on
each side of the skeleton curve is assigned to each target point as the
initial state.

When loading beyond the elastic-limit is made along one side
skeleton with a certain amount of plastic deformation, the target point
in the loading side moves together with the loading point, and at the
same time, the other side skeleton curve shall be shifted to the load-
ing direction as much as ¥ times the plastic deformation. Such a
loading procedure on the skeleton curve is illustrated in Fig. 4(b). If
zero 1is assigned to ¥ , neither hardening nor degrading would occur
during cyclic reversals within the past peak amplitude. If one is as-
signed to V¥ , the hysterisis curve includes no softened portion due to
Bauschinger's effect. Actual behaviors of inelastic portions in steel
members are believed to fall on the intermediate state between these two
extreme states.

(iii) Unloading Path

Unloading path is modeled as shown in Fig. 4(c) so that the curve
becomes a portion of the Ramberg-Osgood function, § = Ro (p) - The
parameters included in this function is determined to satisfy the
following conditions:

du = Rol(pu) (9)

where the point on the curve, (v Pu) , is the starting point of
unloading. This is not always a point on the skeleton curve. When the
unloading occurs at any time during cyclic reversals, this point shall
be substituted by the last turning point.

8t = Rolp1) (10)

where the point, (&r,Pt1) , is the target point on the skeleton curve
in the unloading direction.
dRo (1n
kE' = 1
dp P=Pu

where kg, is the initial unloading stiffness. The dinitial elastic
stiffness is assigned herein to kg .

The curve in the unloading path is determined from Eqs. (9), (10)

and (11), and the tangent stiffness, k* , on the curve is given by the
following function in terms of the present restoring force:
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keka

k* =
—_— r=1
Katr (Ke—Ka) P7Pu_ (12)
PT—Pu
Pt—Pu
wh = —— 13
re ke = s 3

4. RESPONSE ANALYSIS PROCEDURE

In a strict sense, the diagonal element, k*, of the stiffness
matrix shown in Eq. (8) shall not be the tangent stiffness in the state
before the incremental loading is posed, but the secant stiffness during
the incremental loading. An iterative technique is needed, however, to
evaluate such secant stiffness which depends on the amount of increment
to be posed. In this paper, the stiffness is approximated by the tangent
stiffness 1in the pre-increment state. The equilibrium error induced by
such approximation is monitored and corrected at every time step in the
following procedure. Similar technique 1s being used in some of the
existing program codes for inelastic response analysis of frames (2],

(i) All the tangent stiffness matrices of the members and the joints are
gathered, transformed with reference to the present nodal positions, and
superposed into the following tangent stiffness matrix for the whole
structural system:

{AFX}_[KXXKM}{AX}

AF, Kox Koo | L AO (14)

where F., X: force and displacement vectors associated with inertial
mass, respectively. These terms appear in the condensed
equation of motion.

, U : force and displacement vectors associated with static

force constraints, respectively. These terms can be
eliminated from the condensed equation of motion.

Fo

(ii) The condensed equation of motion is numerically integrated by using
the central finite difference method, and the increment of the mass-
associated displacement vector is written in the case of no damping as:

{AX}(i-»iH) = {AX}(i—1—»i)_A tz{[M]_'{Fx}(i)'*')“’ (i){l}} (15)

(iii) The increment of the force-constraint displacement vector is
obtained from the mass-associated displacement vector as follows:

{ABYGoien = [Kealr™! [{{Fslor—{Fos} i} =[Kexlr (AR} (imian ] (16)

where the term {Fsl —1{Fel) is the equilibrium error monitored at
the i-th step. By using this scheme, the equilibrium unbalance would
disappear at the next step, provided that the tangent stiffness matrices
[Kse)ei) and [K,,] (i, are valid for the following time increment.

(iv) The incremental joint-end displacement are transformed from

{Ax}isisnand {AB)(ioi+1y through the transform matrix [T];, based on the
last nodal positions at the i-th step. The internal displacement incre-
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ment in the joint,{A&}i-i+1» is obtained straightforwardly by Eq. (6).

(v) The restoring force vector of the springs, {P}¢+1), 1s obtained by
tracing the hysteresis rule proposed in Section 3.

(vi) The joint-end force vector,{f}(i+1y» can be obtained from {p}i+1 by
using Eq. (5). The nodal force vectors,{F} ¢+ and{F,}+1),» can be
transformed from all the member-end and the joint-end forces through the
transform matrix,[T](i+;)» based on the newly displaced nodal positions
at the (i+l)-th step.

5. MONOTONIC LOADING TESTS

Monotonic bending tests were carried out on welded H-shaped members
under constant axial loads. Stress-strain curve of material, cross
sections used, and test setup are shown in Figs. 5 to 7, respectively.
Three kinds of member section were welded from steel plates, which are
made of the low-yield-ratio high-strength steel recently developed in
Japan. The flange width-to-thickness ratios are 6, 8, and 10. Constant
axial loads were applied to the specimens as much as zero, 20, 40, or 60
percent of their yield axial loads.

The parameters included in the multi-spring model and the
hysteresis rule are arranged in the following manner:

(1) Each flanges and each half webs are idealized as lumped area bars
shown in Fig. 6. The location of the bars 1s determined so that both
the plastic modulus and the moment of inertia of the 4-point cross—
section remain the same as the original ones.

(2) TFor the tension side skeleton curve, the yield stress and the
tensile strength of each bars are derived from the results of tension
tests on flange coupons. The slope of the strain-hardening portion is
determined so that the line shares a single point with the observed
stress-strain curve as shown in Fig. 5.

(3) For the compression side skeleton curve, the yield stress and the
strain-hardening slope are assumed to be the same with the tension-side
ones., The maximum resistance and the negative slope are arranged
through calibration with the bending test results, but they are assumed
to have the common value for the same flange width-to-thickness ratio.
(4) No shifting of the tension-side skeleton curve is made only in the
case that the loading is made along the negative-slope skeleton in the
compression side. Otherwise, the parameter for shifting the opposite-
side skeleton curve, V¥ , is assumed to be 0.5. The parameter of the
Ramberg-0Osgood function, r, is set to 5.

(5) The shear panel is assumed to remain elastic.

The load-deflection curves observed in the monotonic loading tests
are shown in Figs. 9(a) to (c¢) and compared with the model curves based
on the multi-spring joint model arranged in the above-mentioned manner.
It should be noted that the negative slope in these curves includes the
P—A effect as well as the resistance deterioration due to local
buckling failure. The model curves do not agree with the test curves in
all the details, but the global behaviors observed in the tests can be
traced by these simplified models.
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6. COMPARISON WITH ON-LINE TEST RESULTS

On-line tests were carried out by using the same test setup on the
same specimens as the monotonic loading tests mentioned in Section 35.
Analyzed single-degree-of-freedom vibrational system is illustrated in
Fig. 8(b), where the fictituous mass is arranged so that the natural
period in elastic range becomes 0.8 seconds commonly. The N-S component
recorded at El Centro in 1940 was used as excitation. Its peak
acceleration was scaled to 1.2 and 1.6 times the yield acceleration of
the analyzed structure. For the former case of input intensity, @ v=1.2,
two conditions about axial load were considered, no axial load and 40
percent of yield axial load. For the latter case, @ v=1,6, only the
condition with 40 percent of yield axial load was considered.

Response analysis was also carried out by using the multi-spring
joint model arranged in Section 5. Hysteresis loops observed in the on-
line tests and the model analysis are compared in Figs. 10 to 12,
Response quantities, such as peak displacement, displacement range, and
energy absorption, are compared in Figs. 13(a) to 13(c). The model
analysis does not always follow exactly the displacement history
observed in the on-line test. For example, the computed direction in
which major permanent set occurs is sometimes opposite to the test
result. It 4is seen, however, that the global damage 1levels and the
response quantities compared in Figs. 13(a) to 13(c) can be well
simulated by the present model.

7. CONCLUDING REMARKS

(i) The inelastic portion of steel beam-column member is modeled as a
simple mechanism composed of inelastic bar-springs and a shear panel. A
hysteresis rule for the bar-springs in such a multi-spring joint model
is proposed to consider Bauschinger's effect under cyclic reversals as
well as the resistance deterioration due to local buckling failure.

(ii) The parameters of the multi-spring joint model were calibrated to
the results of monotonic loading tests, which were carried out on H-
shaped beam-columns with various width-to-thickness ratios. Then the
response analysis based on the model was carried out and compared with
the results of on-line earthquake response tests. It is found that the
global responses such as peak displacement, displacement range, and
energy absorption are well predicted by the present model until the
structure reaches to the final state in which the lateral resistance
almost disappears.

REFERENCES

(1] vLai, S.S., Will, G.T. and Otani, S.:"Model for Inelastic Bi-axial
Bending of Concrete Members,"ASCE, Vol.110, ST11, 1984,
[ 2] Kannan, A.E, and Powell, G.H.: "A General Purpose Computer Program
for Dynamic Analysis of Inelastic Plane Structures with User's Guide,"
Report No. EERC 73-6 and 73-22, EERC, UCB, April 1973.

—110—



Multi-spring Inelastic
Joints

Fig. 1 Modeling of Steel Member

Elastic Beam Element \/\/\1/\/\/\
dy ) dyt
2
.\<<?>\ w, | MW N#
Ls C M >
9 i 6 i

Fig.3

Fig. 2 Forces and Displacements

at Joint Ends

q];

|a

Internal Forces
and Deformation of
Bar-springs and
Shear Panel

p b p
(3t)
wof 2 ~%ZP Target Point Unloading
Py (tension) ] (=Loading Point) \ point
AS,f 4 \Eupy
(0 / /
N
/ /1
/ 1/1[{ke
7+ / 1
(compression) i 8 lc/ / 5
/ WAS
v N | ’/// I Ramberg -
)

F i / Osgood

Opposite / C
[ <D~ —%&‘\Target Point ~ ’Jf /  Function
(3¢) (2¢) [ePo ~ ¢ ~=7 ™~ Target Point

New Skeleton Curve /’Ake (& )

1

(a) Initial Skeleton Curves

(b) Shift of Skeleton Curve

(¢) Unloading Path

Fig.4 Hysteresis Rule for Bar-Springs

(ton/cm?)

1 i I

€

0 10
Fig. 5 Typical Stress-Strain Curve

of Steel Material Used
for Flange Plates

20

108, 144,
F:: 180 ::j
t(

6=ty —

L— b= Z%J_
[/ — 1

(mm)

Al =Ar

9=

A;.__l

X

Fig. 6 Four-bar Model for H-shaped
Cross-section Tested

(%]

— -



i 700
= 8 ]
=
Esof
-
Lin RN =
1" ) 8 e p=d r—c:
(s = [en] [ =2
A—4 o~ £ 3 S = o X
— FEE S =
A . ==} - ] cl\‘j
“1 - -
AM il
I I
Al 2 1 b |{132.5
(mm)
Fig. 7 Test Setup
12 T T
F [ton]
2 F 10k b/t[ = 6~
l N sk ,Modelea
i T i
H—petl T ny=0. 0 I
=1000, 1300, 1600  {mm)
(a) Loaing Test (b) Vibrational 4 -2
System Analyzed
in On-line Tests \\\\\\\ :
Fig. 8 Test Schema o \\\\‘\\
: 0 20 25 3
(a) b/te = 6 x [emd
T T T 1 '[ !] " 1
F [ton] : F [ton 5
/ Modeled b/te =84 b/te = 10
[4 Modeled
N T L \;:ji\ ) 1
] +=0.
ny=0. 0 J L N ]
| Tested o
6 ~\\\\\>
R
N <
J S \\\\\\\\
o 0 1
2 30 0 5 10 15 20 25 30
(b) b/te =8 x [en] (c) b/te = 10 x [en]

Fig. 9 Load deflection Curves —— Tested and Modeled

(ny : Ratio of Applied Axial Load(N) to Yield Axial Load(Ny))

— 12—



8 T T T L A | T
s|LF Ctond i | & o LF. [tonl & ‘:
4 4 ]
2 /A3 . ) BE ST RO Y (RN 1/ 7 e e BT S N SO NN/ (I~ 7 o A% SO S Yoo -
. A[/A 4 lem] ] (em] [em]
; X X X
2t // . : -2 &V 24 4
74 : : o
_4 —‘ .
[Z/ ny= 0 ny=0. 4 ny=0. 4
ol ay=1.2] Tay=1.21 S ay=1. 6
-8 [ P I | -3 _ I PR B -8 i PR B W |
5 -4-3-2-10 1 2 8 45 54 -3-2-1 0 1 23 45§ 5 -4 -3-2-10 t 2 3 45
(a) On-line Tests
8 Ty 8 Ty !
¢ LF [tonl i | 1 [F [tond.i | L
{ 4
2 /7 1
R [em )
X
-z— _Z_
_4 - _4 O SR. _—
ny=0. 4 ny=0. 4
. ay=1. 2] [ ‘ay=1. 6]
ploiviviid i ieiniy pliiis i
5 -4-3-2-10 1t 23 45 5 -4 -3-2-10 1 2 3 45

(b) Computed
Fig. 10 Responses to E1 Centro NS, 1940 (b/t.=6)
(ay : Ratio of Input Peak Acceleration ymax to Yiel Acceleration (Fy/m) )

x P B | i
-8 -6 -4 -2 0 2 ) 6 8
(a) On-line Tests

— T
S—F [ton]
4
2.—
[em]
0
X
-2
_4— -
ny=0. 4
s Tay=1. 2]
-8 t i i i - i i i
-8 -6 -4 -2 0 2 4 6 8 -8 6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 i 6 8

(b) Computed
Fig. 11 Responses to El Centro NS, 1940 (b/t;=8)

— 13—



12 T 12 T T 12 ~————r T —
JLF o L. [ton] 1 LF.[ton] ]
ol L e e g P S . 6 X[en]
3t 3r 3
{em]
0 0 0
-3 -3 % -3
-6 5| 5k
ny=0. 4]
- - ay=1, 2]
_lz -12 1 ] i ~-12
8 - -4 -2 16 8 8 -6 -4 -2 0 2 4 & 8 -8 -6 -4 -
(a) On-line Tests
12 o 12
F [ton]
9 f> g
6 6
3 3
0 _[en) 0
y / x{ Lt
14 :
—6 [ _s TP
ny= 0. 4
. lrav=1. 27 - wo=1. 6
. i, PR B TR S S B
8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 5 8
(b) Computed
Fig. 12 Responses to El Centro NS, 1940 (b/t =10}
6 T 8 T 1z T
computed computed computed
0}
6 [ ]
4 ® L SRS S RIS 4
i ) 6 o . ]
Vi e
2 ¢ bd 20
. "o . . { : :
. M N
: : . i tested
. . tested Nvé  tested . /</i N I R
0 2 6 0 2 4 6 8 0 2 4 8 10 12

(a) Peak Displacement
Normalized by xv

(xy=Mp. H/3E!, Fy: Mpe/H, Myc: Full-plastic Moment under Axial Load)
Fig. 13 Correlation of Response quantities —-- Tested and Computed

(b) Displacement Range
Normalized by xv

— 14—

(¢) Energy Absorption
Normalized by Fyxy



	Multi-spring Joint Model for Inelastic Behavior of Steel Members with Local Buckling



