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1. Introduction

When there is a large change in mechanical impedance between
a soft surface layer and its bedrock, the irregular shape of the
surface layer affects much 1its seismic response. Since such
underground structures as tunnels, deep foundations and so on
follow <closely displacement of the surrounding soil during an
carthquake, a close investigation of motion of a surface layer
wilil yield an important information for design of these
structures.

Finite element method for three dimensional analysis would be
one of the powerful techniques for this purpose. However, more
complicated the soil profile and structures are, more tedious 1is
the numerical calculation, and sometimes, it will be close to
impossible when the number of unknown variables is too large.

The authors have developed a simple numerical model for this

(1)~(4)

purpose . The model is a horizontally spread two-dimensional
finite element net with its nodes supported by springs of the
Winkler type (Fig. 1). Numerical, and experimental studies by the
authors clarified that the present model can account rationally
for an irregular shape and heterogeneity of a surface layer in
frequency range including vibration modes of comparatively low
order. It is, however, still necessary to review closely the
assumptions adopted in the model so that the model can be properly
used in practical cases.

2. Plane-Strain and Plane-Stress Hypothesis

For the sake of simplicity, a two-dimensional surface layer
will Dbe discussed here. The governing equations for a medium are
as follows:
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where, u, w = displacement components in x and z directions,
t=time and VD, VS = longitudinal and shear wave velocities. In

the above equations, vertical ground motion w is considered to be
small when <dynamic response of a wide-spread and horizontally
layered surface with gentle change of depth is studied in low
frequency range including its natural frequencies of low order.
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Thus, one of the practical approaches customarily used to simplify
numerical procedures is to neglect vertical ground motion w, and
this assumption yields the following equation:
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Though this assumption is efficient, it should be noted that
vertical ground motion still has pronounced effect if the surface
layer with a radical change of depth is studied. When a surface
layer is not so thick in comparison with the wave length to be
discussed, not the vertical motion w but the vertical normal

stress 9, will be considerably small. Thus, substituting GZZIO

in the Hooke’s law for a two-dimensional medium, the following

equation can be obtained:

a,,= A&, *t2us =0 (4)
where A, u = Lame’s constants, g, = %% + %% = volumetric strain and
g, = gg. Rearranging of the above equation yields:
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Since eq. (5) holds good along the surface (in x direction),
it is possible to differentiate eq. (5) with respect to x. Thus:
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Substituting eq. (6) in eq. (1), we obtain:
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where, Vp: —*5*f~'and A= INIY Eq. 7 has the same form as the
*
eq. (3) except for the change of Vp into Vp . It is nothing but
the plane stress assumption while the former is the plane strain
one. To discuss the difference between these two hypotheses,
natural frequencies of a simple rectangular surface layer as shown
in Fig. 2 was calculated. Three sides of the laver except the
surface are fixed. Using the simplified governing equation (3) or
(7), The vibration mode Xnm(x,z) and the corresponding frequency
fnm are respectively obtained as:
Xnm(x,z) = sin o 2z sin YH(X+L) ....... (8)
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where, o = 2?&1 and v %% in which n and m are integer number.

%
In the above eqg. (9), Vp must be replaced by Vp when the plane-

stress condition 1is assumed. With increase of L/H, eq. (9)
. _ 1 Vs . ) ,
converges fo (= on  4H ), which is the fundamental natural

frequency of the surface layer with an infinite spread. Egq. (9)
divided by the fO is the following equation as:
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Variations of +the normalized frequency fnm/fO with (%) are

shown in Figs. 3(a),(b) together with the solutions by the Finite
Element method. Poisson’s ratios of the medium in Figs. 3(a) and
3(b) are 0.4375 and 0.49777, respectively. Marked difference can
be observed between these two different assumptions, and it should
be noted here that not the results under plane-strain hypothesis
but those under plane-stress one agree well with those by FEM.
when a three-dimensional medium is studied, the longitudinal

*
wave velocity Vp in a plane-stress plate in the model is expressed

as:
* A*+ 21
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where, A = Nton Fig. 4 shows the rigorous solution of frequency-
domain rocking stiffness of a c¢ylindrical massless caisson

embedded in a surface layer with an infinite spread (by Tajimi,

H.(J)). The solutions by the proposed model with wave-transmitting
boundaries (Fig. 5) are also shown in this figure. Since the
rigorous solution was obtained assuming that the vertical ground
motion 1s negligibly small, very good agreement was seen assuming
the plane-strain hypothesis. Though this agreement validates the
present approach itself, it does not assure us that the plane-
strain hypothesis yields a good approximation. And the marked
difference between these plate conditions urges us to review the
customarily used hypothesis in this field.

3. Vibration Mode along Depth

Another important assumptions in the proposed method is the
shape of vibration mode along depth. Several numerical and
experimental studies revealed that it is appropriate and efficient
to use the fundamental vibration mode of soil columns which is
being assembled into a surface layer as shown in Fig. 1. It would



be, however, necessary to describe more irregular shape of
vibration in the model not only when a surface layer is excited in
fairly high frequency, but also when the change of depth and
inhomogeneity of the surface layer is considerably radical.

Increase of the number of slices along depth would be one
efficient means for this purpose. It is, however, desirable to
minimize the number of division as fewer as possible for the
practical use. Thus, the transfer matrix approach was adopted here
in the time domain analysis assuming that deformation of each
element (Fig.8) igs expressed in a polynomial form with the least
number of terms required to define the boundary conditions of this
silice. That is:

ui(t,z):CS,tz3 + C2,tz2 + Cl,tz + CO,t .......... (12)

where, C3,t’ CZ,L’ Cl’tz and CO,L = unknown constants at time t.

Given the displacements at both ends of the slice, these unknown
constants are so determined as to satisfy the governing equation
(3) in plane-strain case or eq. (7) in plane-stress case. Thus the
following transfer matrix in the time domain can be obtained:
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A surface layer as shown in Fig. 7 is excited sinuscidally
with the frequency of 1.5 Hz which coincides with the fundamental
natural - fregquency of a soil column (shear beam) having the same
depth as. that of the shallow part of this layer. Figs. 8(a) - (c)
shows the time histories of the tremor on the whole ground surface
in different numbers  of soil slice, while Fig. 8(d) show the



rigorous time history obtained using the finite difference method.

In this figure, n_, and n_ o are vertical slice numbers in shallow

and deep parts of the surface layer, respectively, and n is the

number of lateral division. There is no marked difference of
tremor between Lthe above numerical results on the shallow part,
while the shape of the surface tremor is getting closer to the
rigorous solution in the deep part. Fig. 9 shows the time
histories of the ground tremor along the depth at the middle of
the deep part of the layer together with the rigorous solution by
the finite difference method. It 1is obvious that the marked
improvement of the vibration mode with a little increase of slice
number n_ resulted in the above-mentioned improvement shown in
#ig. 8. Though the boundary shape of the surface layer in this
study 1is rather wunreal, these figures 8 and 9 show that it is
necessary to divide the medium into vertical slices when
earthquake response of a surface layer with a radical change of
depth 1is studied in fairly high frequency range, so that an
irregular vibration mode can be expressed well.

3. Conclusions

Two important assumption adopted in the quasi-three (or two)
dimensional ground model were discussed in this paper. The
concluding remarks are summarized as:

(1) Treating the surface plate 1linking soil columns in the
proposed model as a plane stress plate, effect of vertical ground
motion due to a radical change in its shape is efficiently taken
into account without analyzing the vertical motion.

(2) [t is sometimes necessary to divide the medium into vertical
slices so that an irregular vibration mode can be expressed well
when a surface layer with an irregular shape of boundary is
studied. And this number can be reduced if an appropriate shape
function expressing displacement within a slice is adopted.
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(a) Drowned Valley surrounded by Diluvium

(b) Alluvial Ground Model

Fig. 1 Quasi-three-dimensional ground model

Fig.2 Rectangular surface layer
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Fig.3 Variation of natural frequency with aspect ratio
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L= J

(c) Transfer matrix approach (N ,=3) (d)Finite difference method (NZZ=12)

F'ig.8 Time history of tremor on ground surface
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