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1. INTRODUCTION

The purpose of the present study is to develop the economical
finite element analysis program for the collapse simulation of framed
structures and to verify the validity of the developed code through
the comparisons of the numerical results with the test results. In
the next section 2, the outline of the developed code is described, in
which the linear Timoshenko beam element is employed with the variable
location technique of the numerical integration point and the elasto-
plastic constitutive equation expressed in terms of resultant forces.
In the following sections 3 and 4, the finite element results by the
updated Lagrangian formulation are compared with the crush test
results conducted for beams, columns and space frames. The strain
hardening and the frictional contact are taken into account in the
present analysis.

2. OUTLINES OF THE DEVELOPED FINITE ELEMENT CODE [1-3]

The outlines of the developed finite element code for the crush
analysis of framed structures are as follows: (1) The linear
Timoshenko beam element based on the reduced integration technique
(one-point integration) is extended to the three-dimentional finite
deformation problem. (2) The location of the occurrence of a plastic
hinge in the element is controlled by the movement of the numerical
integration point. (3) As for the incremental theory, the total
Lagrangian formulation is used for the ultimate strength analysis,
while the updated Lagrangian formulation is employed for the crush
analysis accompanied by large strains and rotations. (4) The elasto-
plastic constitutive equation is expressed in terms of the generalized
stresses (i.e. sectional forces) and the generalized strains (such as
curvatures) with the strain hardening effect. (5) As for the contact
between the loading slab and the test specimen, the penalty function
method and the direct control of the nodal displacements are
appropriately employed.

The assumed yield function is expressed as

£2 = (My/Zygp)? + (My/Zyp)?2 + alN/AJ{(My/Z5)2 + (My/Zyp)231/2
+ (/)2 + 3(M,/Wp)2 (1)
where N, My, My and M, are the axial force, the bending moment about
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x-axis, the bending moment about y-axis and the torsional moment,
respectively. A is the cross-sectional area. Zy, and Zyp, are plastic
sectional coefficients, and W, is the corresponding coefficient for
torsion which is given by the Eollowing equation for a circular pipe:

Wy = m(Dy2 - Dy2)/12 7 (2)

where Dy and D are the outer radius and the inner radius,
respectively. The 'a' in eq. (1) is the parameter which determines
the shape of the yield surface, It is assumed 0.5 in the present

analysis.

3. NONLINEAR COLLAPSE OF BEAMS AND COLUMNS[3]

3.1 Clamped Beam Under Centrally Concentrated Loading

Fig. 1 shows the comparisons between the numerical results and
the experimental results for a beam subjected to a centrally
concentrated loading, whose ends are both clamped and horizontally
free. In the finite element analysis, a half span of the beam was
subdivided with five uniform elements. In the loaded and the clamped
elements, the numerical integration point is placed at the element
edge opposite to the loaded or the clamped end in order to make the
plastic hinges form exactly at the loaded or the clamped end. The
agreement between the analysis and the experiment is fairly good.

3.2 Fixed Beam Under Centrally Concentrated Loading

Fig. 2 shows the results for a fixed beam subjected to a
centrally concentrated loading, whose ends are free from sliding. The
assumed mesh is the same as that for the clamped beam in the preceding
subsection., A slight difference between the calculated and the
experimental load-displacement curves is due to the occurence of the
local flattening at the loaded section, as observed in the
experimental photo shown in Fig. 2(b).

3.3 Simply Supported Column Under Eccentrically Compressive Loading

The numerical and the experimental results for an eccentrically
compressed column with simply supported ends are shown in Fig. 3. A
half span was subdivided with ten uniform elements in the finite
element analysis. The calculated deformation of the column is in
fairly good agreement because of the consideration of a strain-
hardening effect.

4. CRUSHING COLLAPSE OF SPACE FRAMES[3]

The crush tests of space frames have been conducted for three
loading cases as shown in Fig. 4. The members are connected with each
other by the rigid ball, which causes the difficulty of the treatment
of frictional contact between the loading slab and the test specimen
in the finite element analysis.

4.1 Crush of a Space Frame Under 4-point Loading

Fig. 5 shows the numerical and the expermental results for the
space frame under 4-point loading. Four beam members are respectively



subdivided with 20 uniform elements and each one of four columns is
subdivided with 40 uniform elements. The difference between the
calculated and the experimental load-displacement curves is due to the
slight difference of the timing for the buckling of four columns.
Both deformations agree well with each other.

4.2 Crush of a Space Frame Under 2-point Loading

Fig. 6 shows the results for the space frame under 2-point
loading. The beams and the columns are subdivided with 20 and 30
uniform elements, respectively. The agreement between the numerical
and the experimental results is good as a whole.

4.3 Crush of a Space Frame Under l-point Loading

The calculated results for the space frame under l-point loading
are compared with the experimental results in Fig. 7. Two different
frictional coefficients are assumed in the analysis. In the analysis
1, the initial value is 0.2 and later it becomes 0.12, while in the
analysis 2, the initial value is 0.2 and later it becomes 0.10. The
analysis 1 agrees a little better with the experiment. The present
analyses have been conducted with 204 elements, 204 nodes and 546
loading steps. The computing time for each case was 135 seconds in
the main frame HITAC M-682H and 965 seconds in the graphic-
supercomputer STELLAR GS-1000.

5. CONCLUDING REMARKS

The finite element program for the collapse analysis of three-
dimensional framed structures under static loading has been developed
and the validity of the developed code has been checked through the
comparisons of the numerical results with the test results. The
conclusions can be summarized as follows:

(1) From the results for beams and columns, it can be seen that
the present analysis method gives sufficiently accurate solutions for
the collapse problem accompanied by large strains and large
displacements, except for the cases when local deformations as shells
are obvious.

(2) From the results for space frames, it can be seen that the
developed code is sufficiently economical and accurate from a
practical point of view in the crush analysis of three-dimensional
framed structures.
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Fig. 1 Clamped beam under centrally concentrated loading
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Fig. 2 Fixed beam under centrally concentrated loading
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Fig. 4 Type of loading for a space frame
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Fig. 5 Space frame under 4-point loading
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Fig. 6 Space frame under 2-point loading
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Fig. 7 Space frame under l-point loading
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