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EARTHQUAKE RESPONSES OF STRUCTURES WITH SLIDING FLOOR LOADS

Koichi TAKANASHI (I)
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SUMMARY

Sliding of floor loads will occur during earthquake excitation in the
case that the floor loads are not fixed on the floor. This causes
considerable changes in response behavior of the frame. A theoretical
approach and a numerical analysis, which are verified by the experiments,
reveal how the response amplified factor is changing according to the
variation of a friction coefficient and how the story shear force response
reduces their values due to the sliding of the floor load.

INTRODUCTION

The seismic force is determined in proportion to the sum of dead and
live loads in usual earthquake resistant design procedure. Sliding of floor
loads will occur during earthquake excitations in the case that the floor
loads are not fixed on the floor. The sliding of the floor loads may
considerably change the frame response. Moreover, in some cases the floor
loads collide against the loads nearby and the movement of loads is
restrained by stoppers provided on the floor. These behaviors will also
influence on the frame response. In this paper, firstly, rigorous solutions
are derived from the basic equation of motion for a frame model with a
block weight unfixed on the floor of the frame. Secondly, for analyses of
rather complex frames with sliding blocks, a numerical method is proposed.
These analyses are carried out by computer. The preciseness of computed
results is proved by the experimental results which have been obtained by
shaking table tests on a simple one-story frame model and a three—story
frame model with a sliding block on each floor. Finally, response behavior
of frames with sliding floor loads during earthquake is presented with the
results of the computer analyses.

FUNDAMENTAL BEHAVIOR

A simple structural model as shown in Fig.l was taken for a rigorous
analysis. The equations of motion for this system can be expressed as

M X+ ¥ +CX+RhX-sgn(U)F = 0 (1.1)
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mU+5+¥ ) +sgnilF = 0

(1.2)

where M : The mass of the frame
m : The mass of a block on the frame
X : Acceleration of the frame
X ¢ Velocity of the frame
X : Displacement of the frame
§ : Acceleration of a block relative to the frame
U : Velocity of a block relative to the frame
C : Damping coefficient of the frame
K ¢ Stiffness of the frame
F : Friction force between the floor of the frame and the block

sgn( ): Signum function

In the Egs.(l.1) and (1.2), the dynamic friction coefficient 1is

assumed to be equal to the static friction coefficient.

) In a sinusoidal excitation, 1if we consider only the period in which
=0 , Egs.(l.1) and (1.2) can be expressed in the following forms:
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The general solutions of Egqs.(1.3) and (1.4) are
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The integral constants in the above equations are
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determined

according to the initial conditions. Two cases are considered here as the

initial conditions

For the case where no halt exists during a half period,
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where Up: Maximum displacement of the block relative to the frame

Xo: Displacement of the frame at the time t=0
Xo: Velocity of the frame at the time t=0

For the case where a halt exists within a half period, say,

at 1‘=0(-‘,;% (O<a<1)

£=0 : U=ly . =0 . Xa=Xor £ | Sp=Xo . ¥4¥=ff
f=aL : U=l . U=0 . Xe=X1+E | Sa=1)

where Xi: Displacement of the frame at the time t=<1%
Xi: Velocity of the frame at the time t= a%

The equation of motion is derived when there is no
sliding.
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The solution of Eq.(1l.11) is:
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The initial conditions for this case are:

t=of X=X . ¥=Xi
=L 0 Ye-Xp . K=-Xo . SeVe-k

As an example of the analysis mentioned above, the response
The results of the

factors were obtained for various friction coefficients.
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occurrence of
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amplified

analyses are shown in Fig.2. The natural frequencies in the abscissa were

calculated for frames with fixed blocks. The fundamental response

of the system is known by this figure.

behavior



NUMERICAL ANALYSIS

A numerical analysis was developed in order to analyze response
behavior of complex structural systems under random vibration such as
earthquake excitations. A structural model for the analysis described here
is shown in Fig. 3. The frame structure is idealized as a lumped mass
system. A lumped mass is imagined at each floor level, where a block
idealized as a sliding floor load is placed. Friction behavior between the
floor and the block is characterized by specified friction coefficients psi
for the static and Mdi for the dynamic. Two stoppers are installed at each
floor. The space distances between the stoppers and the block can be
adjusted according to a prescribed analysis.

The equation of motion describing the response behavior of the frame
system and the blocks on the floors are shown in Egs.(2.1) and (2.2).

(M) (X} +(C) 8]+ (R} = (F}==(M] {1}F o

(2.2)

where (M)} is a mass matrix of the floor masses, [m] a mass matrix of the
blocks, [C] a damping coefficient matrix, {F} the friction force vector,
{R} the restoring force vector = [Ah] {X}for an elastic system, [K] the
elastic stiffness matrix, and {X},{X},{X} are the response acceleration,
the response velocity and the response displacement, respectively. Finally,
Y means a scholar value of the ground acceleration. By using the central
difference method, the response values {Xn}and {U,}] at the time t=n-At,
where n is the number of time steps and At is the time increment, can be
represented as:

(Xo} = 2{Xao1) = {Xo2) + {Koor A8 (2.3)

{Un} = {(Unr} + {Un-d )t (2.4)
Then,
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The element F; of the vector {F,}, that is, the friction force at the0 i-th
floor, is expressed as:

I. Fi=—mi (Xi+Y) for the halt state (2.8)
I. Fi=son(U;) -m; - pa-g for the slide state (2.9
The change of the states is recognized by:

| Xi+¥ | > psirg for 1-1 (2.10)



;=0 and | Xi+¥V |=peirg for I-1 (2.11)

The collision of the block against the stoppers is also considered
simply. The collision is assumed to take place in an infinitely short time
so that the friction force, the restoring force and the damping force do
not affect the repulsion force. Then the repulsion force can be calculated
by the assumption of a simple repulsion of two bodies. Fig.4 shows such a
case. The two bodies change their velocities before and after the
collision, namely, from Ci to -Vy for the body with the mass mi and from
—Co to Vo for the body with the mass m2. V; and V2 can be calculated by the
following equations:

. +olo - .

vy = WELHECD gy —eCy (2.12)
+melo .

Vo = m%ﬁgﬁ-_(_ﬂw_gcg (2.13)

where £ is the repulsion coefficient.
Applying these to the frame with the sliding blocks, the velocity
change of the frame and the block can be calculated by:

X, = _\'S+M'jlmus(1+e_) (2.14)

U, = —¢eUs (2.15)

where X, and X. are the horizontal velocities of the frame before and after
the collision, respectively, and Us and U. are the velocities of the block
before and after the collision.

The calculation procedures are thus summarized:

1) The response displacement of the frame and the relative displacement
of the block to the floor at the time t=n-At are calculated by
Eqs.(2.3), (2.4) with the values at the previous step. If collision is
detected from the calculated relative displacement of the block to the
floor, the required calculation is carried out.

2) According to the calculated value {X,}, the restoring force vector at
the time t=n-At , {R.} is evaluated.

3) The values of {X,} , {Un} and {Un+%} are calculated by Eqs.(2.5),(2.6)
and (2.7). In this calculation, the friction value {Fa} is assumed.

4) By the velocity condition at the time t=n.dt, the actual friction
force {Fnx}' can be determined. {Fa}' must be compared with the
previously assumed {F»}. In case the coincidence between these two
values is not obtained, then the above procedure must be repeated
until the coincidence is attained.

VERIFICATION BY EXPERIMENTS

Shaking table tests on a single story frame model and a three story
frame model were carried out, in order to verify the adequateness of the
numerical analysis described previously and to examine the preciseness of
the calculation results. Two types of the shaking table tests were done;
resonance tests and response tests to earthquake waveform excitations. The



structural models are shown in Fig.5. The weights of the floors and the
blocks are summarized with the friction coefficients presented in Table 1.
The natural frequencies and the damping ratios are shown in Table 2.

The results of the resonance tests are shown in Figs. 6 and 7. In Fig.
6, the same behavior as in Fig.2 can be observed. Moreover, the second peak
in the low frequency range could be detected. Existence of the second peak
has been anticipated in the past literature.

The experimental results are compared with calculation results which
have been obtained by the previous numerical analysis in Figs.8 and 9.
Agreement in these two sets of values is pretty good. It can be said that
the adequateness of the numerical analysis is fully verified by the
experiments.

The space distance between the block and the stoppers influences on
the response displacement of the frame. Figs.10 and 11 show that the
displacement reduces its value as the space distance increases. The space
distances can be determined from these data in design procedure.

SOME RESULTS FOR DESIGN

It was observed that the response story shears of the frames were
considerably reduced in case the blocks on the floors slide during
vibration. From the viewpoint of frame design, this evidence encourages
designers to estimate design seismic loads smaller than the values in
actual design procedure. In another expression, design live loads can be
estimated as being lower than the actual values. Several analyses were
carried out to examine this evidence. In Figs.l2 and 13, calculated story
shear forces are expressed against the fundamental period of frames in the
cases of various friction coefficients and weight ratios of blocks and
floors. In these two figures, the values in the vertical axis show the
equivalent response accelerations defined as:

U im;
Mi+m; (4.1)

A o= i+ ¥+

where A; is the equivalent response acceleration of the i-th floor, X: the
response acceleration of the i-th floor, ¥ the ground acceleration, {; the
acceleration of the block relative to the i-th floor, and M; and m; are the
masses of the i-th floor and the block on it, respectively. If the total
mass ( Mi+m; ) is multiplied by Ai, the outcome shows the story shear
actually occurred during the vibration.

From these spectra for the waveforms of acceleration recorded in past
earthquakes, the equivalent value Ai is considerably reduced in smaller
period range, say, less than 1.2 second. The reduction rate, however, is
strongly dependent on the values of friction coefficients and the ratios of
the masses. The design acceleration values, therefore, must be carefully
determined with reference to the analytical data.

CONCLUDING REMARKS

Concludingly, the results obtained in this paper can be summarized as
follows:
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2)

3)

1)

2)

3)

4)

Vibration behaviors of a frame with sliding live loads were rigorously
analyzed for sinusoidal excitations. Fundamental properties of the
frame were known through the analyses.

A numerical analysis method was developed in order to obtain various
response behaviors of frames with sliding live loads under earthquake
excitations.

The numerical analysis was verified by shaking table tests on a
single story and a three story frame model. The analytical results
coincided the experimental results very well.

Tt was examined that response story shear forces of frames reduce
their wvalues considerably in case live loads on the floors slide
during vibration. This evidence suggests that the live loads can be
estimated lower than the actual values in seismic design procedures.
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Table 1 Weights of floor and blocks, and Friction

coefficients
Weights of | Weights of Ratios | Friction
Floors(kgf) | Blocks(kgf)iof Weights{ Coeff.,
Frame
in Fig.6 58.3 31.6 0.542 0.21
™~ i 1F1, 64.8 31.6 0.488 0.11
@ 80
§;:‘ 2F1.! 64.8 31.8 0.488 0.16
= 8 13FL.| 58.3 31.6 0.542 0.17

Table 2 Natural frequencies and damping ratios

Without Block With Block Fixed

Frequencies ;| Damping Frequencies | Damping

(HZ) Ratios (HZ) Ratios

Frame

in Fig.6 9.69 0.002 7.69 .003
o :i lst 3.94 0.007 3.19 .005
§E|ond| 11.4 0.005 9.14 .003
M Elsra]| 164 0.005 13.2 .003
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