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1. INTRODUCTION

It is widely held as a design philosophy that buildings may under-
go some inelastic deformations but they must avoid fatal damages during
severe earthquakes. In design procedures, recent computer algorithms
have potential to predict the inelastic behavior precisely. Experimen-
tal studies are still indispensable, mnot only because precise computer
analyses require more accurate informations on actual behaviors of
structural elements, but also because it must be verified whether the
global response of the whole system can be predicted by assembling the
mathematical models of each elements. From this point of view, the
authors have conducted several earthquake response tests on scaled
steel frame models to collect actual records of inelastic responses
[2,3,4,5,6]. This paper summarizes nineteen cases of these test results
to show typical hysteresis loops of braced and unbraced steel frames,
and also this paper discusses 1) the properties of dynamic loading
paths on 3-story frames, and 2) the correlation of 1inelastic test
results and elastic response spectra.

2. SUMMARY OF EARTHQUAKE RESPONSE TESTS

The earthquake response tests reported herein consist of five
cases of shaking table tests and fourteen cases of computer-actuator
on-line pseudo-dynamic tests. In the latter test method, the restoring
forces referred in the numerical integration of equation of motion are
consecutively measured in a loading test, which is carried out in
parallel with the computation [1,4].

Various types of scaled steel frame model were tested under uni-
directional horizontal ground motions. The test setups are illustrated
in Figs. 1(a) to 1(d). The profiles of the models are summarized on
Table 1 with the following items: (a) Test code, (b) Number of stories,
(¢) Mass of each floor, (d) Braced or unbraced, (e) Weak-columm or
weak~girder, (f) Dimensions of sections used, and (g) Properties of
material used.

Two kinds of excitations used were scaled both in time and in
amplitude from the N-S component recorded at El Centro in 1940 and the
E-W component recorded at Hachinohe Harbor in 1968. The parameters of
excitations are compared to the model parameters, such as fundamental
period and yield strength, on Table 2.
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3. HYSTERESIS LOOPS

Restoring forces fi or acceleration records were measured at each
floor levels, and these data were transformed into story shear forces,
Qi. Hysteresis loops of the lst story shear Q1 vs. lst story drift 81
relationships are shown in Figs. 2(1) to 2(19). While all the 3-story
models but No.l7 are weak-column type and regarded as shear-type inter-
action system; No.l7 model is weak-girder type, and its story hyste-
resis loop has an irregular shape as shown in Fig. 2(17). As for the
test No.l7, the modal displacement vector {d} and the modal restoring
force vector {q} are calculated from the test data by the following
formulas:

{x} = [u] {4}, [(UIT {£f} = {q} ¢D)

where {x}: Relative displacement vector measured at each floor levels.
{f}: Restoring force vector measured at each floor levels.
[ul: Classical normal mode matrix of elastic vibration. The mode
shapes were derived from resonance tests.
[UIT: Transposed matrix of [U].

The hysteresis loop of the first mode, ¢qi-di relationship, looked
like an ordinary type of elastic-plastic hysteretic model, as demon-
strated in Fig. 2(17)'. The reason why the yielding force in the first
mode hysteresis is kept constant is that the failure mode of the weak-
girder model was very close to the first vibrational mode, in other
words, that the first mode shape was almost orthogonal to the yield
surface of the frame.

4, DYNAMIC LOADING PATHS ON 3-STORY FRAME MODELS

A set of the three story shear forces, (Q1,,Q3), make a load
point 1in the 3-dimensional load space. The trajectory of the point
represents the dynamic loading path on the model during the response
test. Three projections of the trajectory to the Qi-Qj plane are shown
in Figs. 3(1) to 3(4). As for the test No.l7, modal restoring forces
are used instead of story shear forces. 1In the figures the sections of
the yield surfaces of the frame models are also illustrated, and they

are found to bound the existing range of the load point. The dashed
lines show the projection of the direction in the first mode of the
elastic vibration. It is noteworthy that even in the inelastic vibra-

tion the behaviors of the loading paths are strongly controlled by the
first mode vibration.

5. CORRELATION OF INELASTIC TEST RESULTS AND ELASTIC RESPONSE SPECTRA
In the past, various types of methods were proposed to predict the

inelastic earthquake responses from the elastic response spectra. In

this paper, the following three methods[7,8,9] are verified by the test

results:

(Qv/Qe) = 1/V 2n ¥ 1 (2)



(QY/Qe) = 1/ V2 u" +1 (3)
(Qy/Qe) = 1/ (n'" +1 ) (4)

Eq.(2) represents the assumption of "identical strain energy"
after Housner([7], where n denotes the hysteretic energy consumption
normalized by the product of the yield strength Qy and the yield defor-
mation 8y, and Qe denotes the response shear force of elastic system.
The values of n were estimated from the test hysteresis loops and
plotted to the values of Qy/Qe in Fig. 4(1). The relationship of
eq.(2) was also plotted in the figure and proved to match with the test
results.

Egs.(3) and (4) represent the assumption of "identical apparent
strain energy" after Newmark and Veletsos[8] and the assumption of
"identical displacement" after Penzien[9], respectively, where u'
denotes the normalized excess of peak response displacement from the
elastic limit. These two equations and the test results were plotted on
the u' - (Qy/Qe) plane in Fig. 4(2). It is found that eq.(3) over-
estimates the test values of u', and that eq.(4) matches with the test
results so far as the values of (Qy/Qe) are greater than 0.15.

6. CONCLUDING REMARKS

Nineteen cases of earthquake response tests were carried out to
simulate inelastic responses of various types of steel frame models.
(1) All the 3-story frame models but No.l7 were regarded as shear-type
frame models, and their hysteresis loops were shown in story shear vs.
story drift relationships. As for the No.17 weak-girder model, load
and displacement vectors were transformed by classical normal modes in
elastic vibration, and it was demonstrated that the transformed hys-
teresis loop of the first mode looked like an ordinary elastic-plastic
hysteresis.

(2) Trajectories of story shear forces in 3-story frame models were
presented. It was found, 1) the trajectories were bounded by the yield
surfaces which dindicated global yieldings or failure modes of the
frames, and 2) the behaviors of the story shear vectors dinside the
yield surfaces were considerably controlled by the elastic vibrational
modes. These results support that the modal properties in the elastic
vibration of the frame should be well reflected on the vertical distri-
bution of the design story shears as done in the current seismic provi-
sions of Japan.

(3) Three kinds of methods to predict inelastic responses from elastic

response spectra were applied to the test results. 1) The hysteretic
energy consumption in the tests were well predicted by the assumption
of "identical strain energy" after Housner. 2) The peak response

displacements in the tests were overestimated by the assumption of
"identical apparent strain energy" after Newmark and Veletsos. 3) The
peak response displacements were approximately predicted by the assump-
tion of "identical response displacement' after Penzien, so far as the
yield strength of the frame was kept larger than some levels.
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Table 1

Profiles of Test Frame Models

(a) (b) () (@) (o) () (g)
ries or or : > =
Code m. (ton cn~¥sec?) Unbraced Weak-Girder C((),:‘:mn G:,,:;jer B(rma“;:e A (ton/t:n‘) 0'.{/0" (“"}mz) JY/GI
o1 R | 0.00197 WC -26.5¢15.9 — — = 2.81 10.61 — —
g§ : ggig; U Wg _ 1-200x100x5.5x8) _ : _ Flange : 3.12[ 0.70 _ _
04 R | 0.0182 (strong-axis) ! Web : 3.82 0.79
05 R 0.167 T
06 R 0.167 -40.1x24.8 - D-12.3x5.6: 130.
> g LARCRY 0 -6.9%5.61 64.8
172 - - -6.9x5.6] .

% o0 B | MWC ; 2.53 |0.58| 2.42 {0.73
0 R | o.208 -20.0x24.81 —_ [1-18.3x5.6; 130.
1 R | 0.205 |
12 R 0.205 - - D-10.5X5.6| 64.8

2| 0.000602 '
13 3 3] 0.000595| U WC -30.x12. - - =

R 0.000597 !

2 0.000601 -30.x12.{1st} i
14 3 3 | 0.000594 U We -15.x12. (2nd) — — [

R | 0.000595 .02, (3r0) !

2 | 0.000602 ) 2.77 }0.61 - -
15 3 3 | 0.000595 U WC -30.x12. — — : —

R 0.000597 |

2 [ 0.000601 -30.x12.(1st) i
16 3 3| 0.000594 | ) WC SS2.(20) e - : —

R 0.000596 -13.x12.(3rd) |

2 0.000592 [
17 3 3 | 0.000592 U WQ -13.5x19. |1-9.x19, — : — 1.83 0.60 _ —

R 0.000592 |

2 | 0.0153 '
18 3 3| 0.0153 B WC ) Flange : 0.74

R | 0.0153 H-200x50x5x7 ] .30 Y

2| 0.0153 — - 0 -10.%6. | 139. 2.90 j0.81
19 3 3| 0.0153 B WC 1 Web : 3.60] 0.78

R | o.0t53 !
U : unbraced, B : braced, WC : weak~column, Hg : weak-girder, 0O-bxd : rectangular section T
gy ¢ yleld stress, gg ¢ tensile strength, derived from quasi-static tension tests i' " bending
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Table 2 Parameters of Earthquake Response Tests

Mm @ (3 (1) (5 (6) (7) (8) (9) (10) (11) (12)
Tast S*::i:’z Inpue  Excication i T . Test Speed
Test or | Wave Duration Ii’lmx of Free '/7 &y hhii. p—a effect
Code | Ou-line Sha Y Vibracion i a (¥ceal
Test pe (sec) (gal) (sec) (sec) (gal) ¥ speed)
ol 0 i 0.5 5.12 865. +5.12 0.65 450. 1.9 0.02 ~0.035t/cm
02 o E 1.0 8.0 320. +2.0 0.51 200. 1.6 0.04 "
03 0 E 1.0 8.0 640. +2.0 0.31 $60. 1.1 0.04
04 0 E 1.0 8.0 960. +2.0 0.31 560. 1.7 0.20
05 0 E 1.0 8.0 40. +2.24 0.37 22, 1.8
06 0 E 1.0 8.0 100. +2.24 0.37 20. 5.0
o7 0 E 1.0 8.0 32, +2.24 0.36 l4. 2.3 ignored
08 0 E 1.0 8.0 80. +2.24 0.36 14, 5.7
09 0 E 1.0 8.0 40. +2.24 0.41 24. 1.7 0.0t
10 0 £ 1.0 8.0 100. +2.24 0.41 23. 4.3
11 0 E 1.0 8.0 36.8 +2.24 0.39 t4. 2.6
12 9 E 1.0 8.0 91.8 +2.24 0.39 14. 6.6
13 E 0.5 5.12 576. +5.12 0.77 370. L.6
14 s E 0.5 5.12 530. +5.12 0.84 370. 1.4 due to
L5 5 i 0.5 5.12 453. +5.12 0.77 370. 1.2 L
16 s i 0.5 | s.12 | si2. +5.12 0.86 | 370, 1.5 actual welghts
17 5 i 0.5 5.12 751, +5.12 1.05 360. 2.1
18 0 £ 1.0 | 10.0 160. +10.0 0.48 57. 2.8 ‘ -0.45¢/ca(lst sc.)
0.01 ~0.30t/cm(2nd st.)
19 0 £ 1.0 | 10.0 130. +10.0 0.48 57. 2.3 ~0.15¢/cm{3rd st.)

0 : cowputer-actuator on-line test, S : ghaking table test, W : Machinohe EW ( Tokachioki earthquake in 1968 )
E : El Centro NS ( Imperial Valley earthquake in 1940), 7Y : scaling factor in time, T, ¢ natural period ( 1st mode ),

lylmax : peak acceleration of simulated earthquakes, ay ! yleld acceleration of lst story or lst mode
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Fig. 2 Hysteresis Loops Observed
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