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SYNOPSIS

$ilo group is consisted of many cantilever type cylindrical shells as
well as of connection walls between these cylindrical shells. The static
and the dynamic behaviours of silo group under earthquake loading are
numerically analyzed by using a simple mechanical model, and effect of
number of bins, stiffness of connection wall and hight-to-diameter ratio
are examined.

INTRODUCTION

The purpose of this paper is to investigate analytically static and
dynamic behaviours of silo group subjected to earthquake loadings. Many
papers about silos have been published and their main themes are (1)
estimation of internal pressure caused by stored materials[l], (2) evalua-
tion of equivalent mass during earthquake [2], (3) buckling behaviours

[3,4], and others. However, silo treated in these studies is not a silo
group but an isolated silo. Silo group represents a compound shell which
is composed of a large number of cantilever type cylindrical shells
connected directly or with connection walls (Figs.l and 2), so that a silo
group reveals more complicated mechanical behaviours than an isolated silo.
Each cylindrical shell of a silo group is called "bin."

In the paper, static and dynamic analyses are carried out within the
elastic range in order to examine the following items:

For the static behaviours of silo group subjected to the unit horizontal
load at the silo~top,

(1) Effect of number of bins, stiffness of connection wall, and hight-to-
diameter ratio (Lg/R) upon the displacement behaviour and upon the
stress distribution.

For the dynamic behaviours,

(2) Effect of number of bins, stiffness of connection wall, and eccen-
tricity of mass between silo group and foundation on natural frequency
and on responses of displacements and acceleration to two kinds of
earthquakes.

A simple mechanical model, which is called "Beam with Rigid Bar Model," is
proposed in order to grasp the overall mechanical behaviour of silo group
comparatively easily. In this model, each bin is divided into any beam
elements which have rigid bars at both ends, as shown in Fig.3. These
rigid bars are used to connect the bin with connection walls, which are
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represented by using the rectangular in-plane and bending finite element.

Each beam element admits bending and shear deformations, but cannot
represent oval deformation of bin, Hence, this model can be used to grasp
global behaviours of silo group by small degrees-of-freedom.

SILO GROUP FOR NUMERICAL ANALYSES

For numerical analysis, let us select a silo group, which is considered
to have the standard size, among reinforced concrete silos recently used.
Height, radius and thickness of a bin of the silo group are Lg=30m, R=3.75m
and H=0.2m, respectively, and length and thickness of a connection wall are
1=0,75m and Hy=0.4m, respectively. Young's modulus E, Poisson ratio v and
density p of both the bin and the comnnection wall are E=2.lx106t/m2, v=0.17
and P=2.4t/m3, respectively. And also, the density pg of stored material
is pg=0.8t/m . Total weight of the stored material estimated by using this
value is about four times as much as the whole weight of the silo group
itself. For the investigation of the effect of hight-to-diameter ratio,
height Lg is changed.

BEAM GROUP MODEL

Let us consider "Beam with Rigid Bar Model," which is called "Beam
Group Model" is the following, because a lot of beam models with right bars
are used for modelling a silo group. As shown in Fig.3, each bin is
represented as an assembly of beam elements which have rigid bars at both
ends. Let us consider the degree of freedom of this model. In the case
that bins are arranged in the straight line, unknown displacements for each
rigid bar are uj, up and w, where uj and u, are vertical displacements at
both ends of the rigid bar and w is horizontal displacement of the center
of the bar. By using these displacement components, displacements u, W and
rotation 6 at the end of the beam can be obtained as

u 0.5 0 0.5 Ut
Wir= 0 1 0 W m
e -0.5/R 0 0.5/R Uz

A connection wall is represented as an assemble of rectangular plane
elements whose node is connected with the end of a rigid bar, so that
total degrees of freedom become 3x(number of rigid bar).

In order to examine the validity of the proposed "Beam Group Model,™
let us analyze a silo group which is composed of three bins, as shown in
Fig.4, by using three different models and then compare the results. The
first model is a beam model which means that a silo group is represented by
one beam only. The second is the beam group model and the third is the
cylindrical shell element. Mechanical characteristics being able to obtain
by means of these three models are tabulated in Table 1 to compare with.

Tt can be understood from this table that local bending moments caused in
the bottom of bin and in the vicinity of connection between bin and
connection wall, oval deformation of cylinder, etc. can not be estimated by
this beam group model. However, the effect of stiffness of connection
wall, which is one of the important items for study, can be investigated.

For the numerical analysis, a silo group which has the same properties



mentioned in the previous section and is composed of three bins in the
straight line,was selected. And unit horizontal load was applied to the
top of each bin. Fig.6 shows the bending moment of each bin in the case of
both five divisions and twenty divisions in the axial direction, calculated
by use of the beam group model. The difference of bending moment which
appears at the end of each beam element is caused by the additional moment
which is made by nodal forces acting at both ends of rigid bar. This
indicates the existence of shear force which transmits from the connection
wall to the bin. 1In addition, it can be known in this figure that the
average moment diagrams in both cases are almost the same.

Table 2 shows the results by three models. In the table, Wmax 1is the
horizontal displacement at the top of the middle bin, Q andT max are the
transverse shearing resultant and shearing stress, respectively, of the
bottom of the middle bin. And oy max is the normal stress at the bottem
edge of the side bin andt max is the maximum shearing stress in the
connection wall. This table shows that the results by the beam group
model are in good agreement with those by other methods.

STATIC ANALYSIS

In order to examine the effects of number of bins, stiffness of
connection wall, and hight-to-diameter ratio, let us analyze a silo group,
which has the same properties in the previous section and is arranged in a
straight line, by using the group beam model. Each bin is represented as
an assembly of five beam elements and unit horizontal load is applied to
the top of each bin.

(a) Effect of Number of Bin
Main objective of this article is to examine the distribution of
shearing stresses in each bin, in other words, the concentration behaviour
of shearing stresses which depends on the number of bins as well as to
obtain the ratio of the bending deformation to the shear deformation.
Figs.7 shows numerical results with respect to the change of number of
bins. Fig.7(l) designates the horizontal displaceemnt at the top of the
center bin, which is nondimensionalized by the displacement of a silo
group which is consisted of only one bin. Full line gives the total
displacement and dotted line shows the bending or flexural displacement.
It is seen that as the number of bins increases, the ratio of the shear
deformation to the bending one becomes larger. Fig.7(2) shows the shearing
of the bottom of the center bin. This figure denotes that the shearing
force becomes maximum in the case of three bins, so that the shearing force
for the case of three bins can be used for structural design in the safety
side. TFig.7(3) gives the normal stresses at the bottom of outer bin in
the longitudinal direction. This shows that the normal stresses in the
case of considering shear deformation'is larger than ones without
consideration. The ratio of the shearing stress in the middle connection
wall to the maximum shearing stress of isolated silo is shown in Fig.7(4).

(b) Effect of Stiffness of Connection Wall

One of the important problems in the design of silo group is to
determine thickness and length of connection wall, which has strong
influence in the overall stiffness and strength. To illustrate numerical
examples, let us analyze numerically a silo group of three bins in a
straight line by changing the length of connection wall. Numerical results
are shown graphically in Figs.8 where abscissas denote nondimensionalized
length of connection wall to the radius of the bin and ordinates are



nondimensionalized by the corresponding value obtained for the isolated
silo. Fig.8(l) gives the decreasing rate of displacement, which can be
understood by the increase of the moment of inertia of a cross section.
From Figs.8(1) to (3), it can be seen that the longitudinal normal stress
changes rapidly though the shearing forces in both bin and connection wall
decreases slightly.

(c) Effect of Height of Bin

As the height of bin is larger, the ratis of the flexural deformation
to the shear deformation becomes larger, so that the mechanical behaviours
such as the distribution of shearing force in each bin are strongly
influenced by the height-to-radius ratio as well as by number of bins.
Illustrative examples are shown in Fig.9.

Fig.9(l) shows the relation between horizontal displacement of the
top of center bin and number of bin as a parameter of height L,, where
L,=3.75m is coincident with the radius R=3.75m of a bin. 1In the case of
Lg=R, the displaceemnt is some 90%, and for over Lg=15, the displacement
is less than 50%. In addition, the difference among the displacements
becomes gradually smaller as Lg exceeds 30m. Fog.9(2) denotes the
shearing force of the central bin. When height Lg is less than 60m,
maximum shearing forces are caused in the case of three bins, and the
distribution fo shearing forces from bin to bin is given in Fig.9(3).

In the case of L, =3.75m the shearing force in each bin becomes the
average value as the increasing of number of bins, However, if Lg is large,
for example, L,=240m, the shearing forces have the parabolic distribution
which corresponds to the distribution of shearing stresses in a beam of
rectangular cross section. Fig.9(4) indicates the bending moment at the
bottom of the central bin. From this figure, it can be known that the
magnitude of the bending moment is almost constant not with standing the
number of bins. In Fig.9(5), the distribution of the normal stresses
caused by the bending moment is shown for the two cases of 5 bins and 9.
The ordinate is normalized by the maximum normal stress which appears at
the bottom of the outer bin. Normal stresses are distibuted linearly
when the height is large, and this corresponds with the results given in
Fig.9(3). Fig.9(6) shows the influence of both the length and thickness
of the connection wall upon the horizontal displacement with a parameter
of height in the case of three bins. When the thickness of the wall is
less than 0.lm, the connection wall cannot reduce the displacement

though the length of the wall is made larger. This means that the
stiffness of the connection wall is too small to make a silo group
monolithic.

DYNAMIC ANALYSIS

In order to obtain the dynamic behaviour of silo groups under the
earthquake loading, the eigenvalue analysis and the response analysis are
carried out. In the eigenvalue analysis, the effects of number of bins,
the stiffness of connection wall and the eccentricity of mass on both
natural period and the vibration mode. And in the response analysis,
maximum responses of displacement and shearing force are calculated in
order to examine the effect of number of bins.

The stiffness matrix used in the dynamic analysis is the same as in
the static analysis, and the mass matrix is derived as the lumped mass by
adding the weight of a silo group it self to the weight of stored
materials. For the beam group model, number of division in the axial



direction of each bin is made three. Notations used in this section is
given in Appendix.

(a) Natural Vibration Analysis

Let us first consider the silo groups of square plan. Natural periods
are shown in Table 3 and in Fig.10, and vibration modes are depicted in
Figs.11(1) and (2) concerning silo groups of one bin and three bins,
respectively. From these tables and figures, it can be known that the
first and the second eigenvalue is the same, so that the first and the
second are translational modes in the Y and Z direction, respectively.

Next the third mode is global torsional mode and the fourth mode is a
local torsionalmode in which each silo is rotated in the opposite direc-—
tion with respect tothe neighboring bin. In Fig.1l0, it can be known that
the decreasing ratio of the natural period corresponding to the transla-
tional mode for more than three bins is little and this tendency is similar
to the decreasing ratio of displacement in the static analysis.

Tor silo groups of rectangular,plan natural periods are shown in
Table 4 and Fig.12 and modes of vibration are depicted in Figs.11(3) and
(4). And for one row plan, natural periods and vibration modes are shown
in Table 5 and in Fig.1l1(4), respectively.

Let us consider the case where there are empty bins, that is, the
distribution of mass does not uniform., Numerical silo group has the
arrangement of 3x5 bins as shown in Fig.12 and shaded bins has stored
material, which corresponds to numbers of abscissa in Fig.l4 and to
numerators in Table 6. Natural periods in the first column are the same
as in the third column in Table 4,Eccentricity of mass causes the change of
vibration, for example, from the translational mode in the Y direction to
the combination mode of translation in the Y direction and global torsion.

In Table 7 and Fig.l5, the effect of the change of both thickness and
length of connection wall on the natural period and the mode of vibration
is shown for the case of 3x5 arrangement of bins. Fig.l5 shows that the
period decreases according to the increase of length when the thickness of
the wall is 0.4m, and also that the period increases when the thickness is
0.025m.

(b) Response Analysis

The response analysis to two kinds of earthquakes is carried out within
the elastic range for silo group of square plan given in Table 3, where
L,=30m and bins are represented by three beam elements. The earthquake
waves used in the paper are the N-S component of El Centro in 1940 and the
E-W component of Hachinohe in 1968. Max acceleration is standardized to
100 gal, and the direction in which silo groups are skaked is Y-direction
and the damping constant of two percent is used. The modal analysis
adopting the first to the sixth modes is used in combination with the
Runge-Kutta method of the time interval of 0.0l second for numerical
integration.

Fig.16 shows the maximum responses of horizontal displacement,maximum
absolute accelerations,and shear coefficients in the middle point of the
beam element, respectively. The maximum displacement, absolute accelera-
tion and coefficient of shear force are 3.86cm, 542gal and 0.31, respecti-
vely, in the case of an isolated silo of 1x1 under the El Centro N-S wave.
In addition, it can be known that the maximum displacements take the values
from 0.43 to 0.78cm for 3x3 and 5x5 and that the maximum coefficients of
shear force cover 0.19 to 0.31.

In order to investigate whether six modes adopted in the modal analysis



are satisfactory or not, the previous results are compared with values
obtained by selecting up to the second mode, and it was proved that both
displacement responses were almost the same and that the difference as to
the coefficient of shear force was about 10 percent. Fig.1l7 and 18 shows
the examples of time histories.

In Fig.19, response curves of horizontal displacement to the harmonic
force with amplitude of 100 gal, which is applied at the base of the silo
group, are depicted.

CONCLUSION

The static and the dynamic behaviours of silo group were investigated
by using "Beam Group Model.'" Major points of interest found from the study
reported in this paper are summarized below.

(1) "Beam with Rigid Bar Model" can be used to grasp the overall
mechanical behaviours of silo groups by small degrees-of-freedom.

(2) The shearing force of the central bin is maximum for the silo group
consisted of three bins when horizontal forces are loaded at the top
of each bin

(3) In order to make a silo group monolithic, thickness of the connection
wall should be more than 0.1lm for H=0.2m.

(4) In the case that the height is comparatively small, the shearing force
in each bin becomes the avarage value as the increasing of number of
bins. However, if the height is large, the shearing forces have the
parabolic distribution.

(5) The shape and the appearing order of modes of vibration is much
influenced by the difference of number of bins in both Y- and Z-
directions.

(6) Maximum responses due to two kinds of earthquakes and response curves
to the harmonic force are depicted to get magnification factors and
coefficient of shearing force.
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APPENDIX: NOTATION

Lg
R

H
L
Hy
E

Y

p
Ps
u
w

: Height of bin (m)

: Radius of bin (m)

: Thickness of bin (m)

: Length of connection wall (m)

: Thickness of connection wall {(m)

: Young's modulus of bin and connection wall (t/m?)
¢ Poisson ratio of bin and connection wall
: Density of bin and connection wall (t/n®)
: Density of stored material (t/m3)

: Vertical displacement of bin

: Horizontal displacement of bin

Notations used in Dynamic Analysis indicate the following modes.

Xn
Yn
Gn
Ln
Bn

ZnXm

: Vertical mode in X direction

¢ Horizontal mode in Y direction

: Global torsional mode

¢ Local torsional mode

: Bow shape mode

: Combination mode of translation in Y direction and global

torsion

Combination mode of translation in Z direction and vertical
mode in X direction

where n and m represent the number of mode.
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Fig.3: BEAM GROUP MODEL
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Fig.2: Symbols

2R+L+SIN(O)

Fig.4: Silo Group with
Three Bins

Table 1: Characteristics of Three Models

Computation of Computation of Estimation of Computation of
MODEL Displacement Shear Force Stiffness of Cross Wall Local Stress
BEAM able able unable unable
BEAM GROUP able able able unable
SHELL (FEM able able able able

Table 2: Comparison of Results by Three Models

CENTER CYLINDER SIDE CYL. [CENTER WALL
MODEL W max q T max Ox max “C max
BEAM 0.236 1,32 1.06 0,413 0,915
BEAM GROUP 0.217 1.28 1.03 0,488 0.920
SHELL (FEM) 0.233 1.26 1.01 0.456 0,879
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Table 3: Natural Periods in the
Case of Square Plan

NO. BINS
MODE 1x1 3%3 55
1st | 0.542 Y1  0.286 YL  0.249 Y1
2ad | 0.542Z1  0.286 2L  0.249 Z1
3rd | 014511  0.200 61 0.214 G1
exoan | 4tR | 0133 Y2 o181 011511
DEF. 5¢h | 0.133 22 0.106 Y2  0.100 Y2
swmax | 6ch | 0.005 X1 0.106 22 0.100 22
DEF. 7th | 0.070L2  0.091 x1  0.090 X1
8th | 0.070v3  0.073 62  0.079 G2
9th | 0.053 23  0.066 —  0.076 —
10th | 0.039 L3  0.0646 —  0.070 —
Ist | 0.507 Y1  0.220 Y1  0.166 Y1
md | 0.507 z1  0.220z1  0.166 Z1
3rd | 0.145L1 01206 0.116 61
4th | 0,097 Y2 0,118 L1  0.115 L1
ONLY Sth | 0.097 22  0.091 XL  0.090 X1
FLEXUAL
DEF. 6th | 0.095X1 0,069 Y2  0.071 Y2
7th | 0.053 L2  0.069 22  0.071 22
8th | 0.039 Y3  0.052 —  0.065 —
9th | 0.039 23 0.046 — 0,053 —
10th | 0.039 L3  0.046 —  0.053 —

(1) 1%1 Bin

(4)

1x5 Bins

Fig.1ll: Vibration Modes
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Table 4: Natural Periods in the '
Case of Rectangular Plan

NO. BINS

MODE 1x1 1X3 1x5 1x7
1st 0.542 Y1 0,542 Y1 0.542 Y1 0.542 Y1
2nd 0.542 71 0.288 Z1 0.315 G1 0.376 G1
3rd 0.145 L1 0,232 G1 0.250 Z1 0.253 Bl
4th 0.133 Y2 0.153 Bl 0.204 Bl 0.237 21
5th 0.133 22 0.138 Y2 0.158 G2 0.194 B2
6th 0.095 X1 0.130 L1 0.137 L1 0.161 B3
7th 0,070 L2 0,107 22 0.133 Y2 0.142 B4
8th 0.070 Y3 0.093 X1 0.127 G3 0.133 Y2
9th 0.053 23 0.086 G3 0.108 B2 0.131 L1
10th 0.039 L3 0.070 Y3 0.101 Z2 0,125 BS

Table 5: Natural Periods in the

Case of One Row Plan

XO. BINS
MODE 3x 1 3% 3 3% 5 3x7
lst | 0.542 21  0.286 YL  0.286 YL  0.286 vl
2nd 0.288 Y1 0,286 Z1 0.249 Z1 0.237 Z1
3rd 0.232 G1 0,200 G1 0.218 G1 0.235 G1
4th | 0.153 BL  0.118 11  0.117 L1  0.116 L1
5th 0.133 22 0.106 Y2 0.106 Y2 0.106 Y2
6th 0.130 L1 0.106 Z2 0.100 Z2 0.097 z2
7th 0.107 Y2 0.091 X1 0,090 X1 0.092 G2
8th | 0.093 xI  0.073 62 0.084 G2  0.090 X1
9th | 0.086 G2  0.064 Y3  0.070 Y3  0.075 —
10th | 0.070 23  0.064 Z3  0.064 Z3  0.072 —
0.4
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Fig.l4: Natural Periods in the Case of Eccentricity of Mass



Table 6: Natural Periods in the
Case of Eccentricity of Mass

NO. NUMBERS OF BIN LOADED
MODE 5/5 3/5 175
1st | 0.286 YL  0.254 Y61  0.195 YGL G.5
omd | 0.249 71 0.205z1  0.151 Z1
3rd | 0.218 G1  0.147 YG2 0,118 Y62 o H=0,025 TORS, LOCAL
()
4th | 0.117 L1 0.100 G2 0.076 Z2XL 2 gut H=0.005 TRAN.Y. Ist
seh | 0.106 Y2 0.095 Y2 0.076 Y2 “
6th | 0.100 22  ©0.090 Z2X1 0.074 G2 E.
Ll
Table 7: Natural Periods as a Parameter z
of Stiffness of Connection Wall =
=
WALL L/R = !
THICK. | poro = 02r | Hw=0.4 TRAN.Y, 1st
(Hw) 0.05 0.25 0.50
1st | 0.305 Y1  0.286 YL  0.259 Y1
20d | 0.264 z1  0.249 zZ1  0.227 Z1 ulr
0.40 3rd 0,227 61 0.218 G1 0.207 G1
' 4th | 0.110 v2  0.117 L1 0.131 L1 LR
5¢ch | 0.104 22 0.106 Y2 0,127 ¥2 6.6 |
6th | 0,094 XL  0.100 Z2  0.123 22 0.0 0,25 0.5
1st | 0.317 Y1 0.339 L1 0.351 L1 . B
ond | 0.280 21  0.332 Y1 0.346 Y1 Fig.15: Natural Periods as a
vogs | 3¢ | o2 0.311 12  0.339 L2 Parameter of Stiffness
' 4th | 0.199 0.302 L3  0.335 L3 of Connection Wall
S¢h | 0.188 L1 0.299 L4  0.330 L4
6th | 0.146 61  0.288 L5  0.321 L5
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Fig.16: Maximum Response and Shear Coefficient in the Case of Square Plan
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Fig.18: Time histories of Response
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