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SYNOPSIS

A simple new procedure is presented for estimating the spatial varia-
bility of seismic ground movement. The seismic ground movement is inter-
preted as a random function of space variable. The parameter which char-
acterizes the scale of the spatial variation of ground movement is identi-
fied from the damage statistics of underground pipelines. The scale of the
spatial variation is found to be a function of the predominant period of
the site area in question.

INTRODUCTION

The seismic ground movement is known to have considerable variation
from point to point in space as well as in time as shown in Fig. 1.
Historically, earthquake engineers have focused their attention to the time
variability, for example, the time history of acceleration, which is a fun-
damental factor in dynamic analysis and seismic design of building types of
structures. However, recent studies [1,2] have reported that the spatial
variation of seismic ground movement is the major source of seismic forces
acting on the underground structures such as subways, pipelines and storage
tanks below ground etc., which by nature extend for large distance and are
widely spaced. The spatial variation has also been understood to be an
important parameter affecting the torsional seismic response of tall build-
ings and of nuclear containment structures having wide spread foundatioms.

The quantitative information of the spatial variation are very limited
so far in earthquake engineering field because of the complexity of the
phenomena and of measurement difficulty in practice. The current studies
available regarding the spatial variation are in all based on an wave
propagation theory. Newmark [2] showed that the strain in ground in the
axial direction of wave propagation is directly proportional to the veloc-
ity, v, of soil particle at the point in question, and inversely propor-—
tional to the wave propagation speed, ¢, through the ground (v/c). He
also showed that the bending strain in ground is similarly proportional to
the acceleration, a, of the ground and inversely proportional to the
square of the wave speed (a/c?). These simple relations are obtained by
differentiating the solution of the equation of motion in one dimensional
wave propagation theory. Hence, these simple relations can not provide
the practical values for the strains in ground unless more sophisticated
models to be able to assign the specific numerical values to the wave
speed, the velocity and the acceleration of soil particle can be establish-
ed. By taking into account for the horizontally travelling Rayleigh wave
in the model, Takada et al. [3] identified the relative displacement
between two points from the data recorded during several earthquakes.
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Shinozuka et al. [4] also showed a simulation method for estimating ground
strain by modeling the seismic wave as a type of Rayleigh wave horizontally
propagating in multiple soil layers. By analysing the total of 123 observed
seismic strains in underground structures during 91 earthquakes in Japan,
Nakamura et al. [5] reported that the axial strain in buried pipes is more
strongly correlated with the two parameters, the peak ground acceleration
amax and the predominant period of ground Tg, than with apgy alone, suggest-
ing the importance of the ground condition in estimating seismic strain in
buried pipes.

The studies mentioned above assume essentially the types of waves and
the homogeneity of soils or soil layers. They also use the data observed
during low intensity earthquakes causing no damage to underground structures
to estimate the parameters involved in their models. It is well known,
however, that the seismic wave is composed of many types of waves reflected,
refracted by the interface between the soils with different soil properties.
Even within nominally homogeneous ground, soil properties may exhibit
spatial variability. The presence of the soil with weak strength may cause
the failure of soil when a strong earthquake attacks the site. Thus, more
realistic model might be required which can incorporate the realistic
nature of intense seismic ground movement mentioned above.

This paper presents a simple procedure for estimating the scale of
spatial variation of ground displacement during strong earthquake. The
principal idea exists in the interpretation that the ground displacement is
a random function of space variables. This interpretation together with
the recently reported damage statistics of buried pipes with small diameter
makes it possible to rationally identifying the scale of spatial variation
of seismic ground displacement during strong earthquakes.

PROBABILISTIC MODEL

It is well known that the axial stress in buried small pipe is much
higher than the bending stress under the action of seismic forces. Therefore
the axial behavior of the buried pipe is considered in this model. The pipe
is assumed to be a straight slender beam on flexible foundation as shown in
Fig. 2. From these assumptions, the axial equation of motion of the pipe
may be given by neglecting the inertial force [l] to the pipe as,

- d2u/dx2 + n2u = n2r(x) s n2 = Kh/(ES) (1)

where E = the modulus of elasticity of pipe, § = the cross sectional area of
pipe material, Kp = the stiffness of soil longitudinal to pipe axis per unit
length and u = the longitudinal (axial) displacement of pipe. The quantity
r(x), which is assumed here to be a homogeneous Gaussian random function
with zero mean and variance D2, represents an ensemble of seismic axial
displacement at the time be fixed. In general, the seismic ground displace-
ment r varies with the time and the space. The variation of r with respect
to the time produces the particle soil velocity and acceleration which
affect the dynamic behaviors of buried pipes. On the other hand, the varia-
tion with the space variables forms the relative displacement between two
points, Numerous studies [1,5] on the seismic behaviors of buried pipes
suggest that the relative displacement between two points is of great impor-
tance. Therefore, the assumption is adopted the time be fized in Eq.(1).

The Fourier transform of Eq.(l) with respect to space variable x gives
the well known relationship between "input" and "output" as,

5, (6) = Sr(k)n4/(k2 + n?)? (2)



where Sj(k) is the one sided spectral density function for j = u, r. The
quantity k is called the "wave number" with dimension of (1/length). By
using the Fourier algorithm, the one sided spectral density function and the
variance for the pipe strain, Se(k) and cg, can be obtained as,

Se(k) = kZSu(k) (3
oi = f: s_(k)dk (4)

Here it is assumed that a possible analytical expression for the
correlation function R,(£) of the homogeneous random function r(x) with
zero mean and variance D? takes a form as,

R (6) = DPexp[ - (b8)°] cosoE )

The distance 1/b, where the amplitude of R, decays to e_l times its initial
amplitude, may be called as the correlation distance. The term cos8f
represents the phenomena of the wavy form in correlation function due to
wave propagation through soil layer. In the face of lack of accurate infor-
mation about the propagation of wave, it is in this paper decided to choose
cosfg = 1, Thus, the physical fact is taken into account for in this model
that the correlation of valuesof the function r(x) at two points, with the
coordinates x and x + &, may attenuate as the distance £ increases.

From the Wiener-Khintchine relation together with the expression of
the correlation function given by Eq.(5), the one sided spectral density
function for the seismic ground displacement r(x) can be obtained as,

5,00 = [0°/(b/m) lexpl-k°/ (20) 7] (6)

The behavior of Sp(k) given by Eq.(6) is shown in Fig. 3. It can be seen
from Fig. 3 that the amplitude is very low in the range of k/b > 5.0. 1In
order to estimate the parameter b, the mean break rate vE of the pipe
(number of breakes per km) will be considered in the next paragraph.

For the homogeneous Gaussian random process with zero mean, the mean
number vf of crossings of the tensile strain in buried pipe, subjected to
the homogeneous Gaussian random displacement, over the limiting admissible
strain ey in unit length of the pipe can be obtained from the Rice's
formula [6] as,

v L_l exp[—ei/(Zci)]

f e
2,2 ,1/2
e 2ﬂ[0€/0€£]

(7N

L = 2n[éwse(k)dk/éwk2se(k)dk]l/2

If €5 = 0, the exponential factor in Eq.(7) goes to one, and vg = L;l
becomes the average rate of zero-crossings with positive slope. Hence, the
quantity Lo represents the average wave length of the random function of
pipe strain. To evaluate L,, the numerical integrations for og and 059 in
_Eq.(7) were performed. Results are shown in Fig. 4. From these results in
Fig. 4, the following approximations may be reasonable for cg and dge

ci = 20%b%[1 - 3.4bexp(-1.07Vn/D)]
n/b > 3.0,  (8)
oze = 120%p*[1 - 4.1lbexp(-1.00V/D)]



for n >>p, the exponential factor in Eq. (8) goes to zero, and Ve in Eq.(7)
becomes
2 2. 2
ve = [/Eb/(Zﬂ)]exp[—ea/(4D b")], (No. of Breaks/m)
)]
* 3
Ve = V. X 107, (No. of Breaks/Km)

where V; is the mean number of breaks per one Km when 1/b and D are
measured in m. The numerical study performed by using Eqs.(7) and (8)
together with a procedure in next section indicates that the condition of
n >>b is valid for small buried pipes like water or gas distribution pipes
though these results are not shown in this paper.

Equation (9) represents the relationship among the mean break rate Vf,
the variance D? of seismic ground displacement, the allowable level of pipe
axial strain e and the parameter b which characterizes the scale of spatial
variation of seismic ground displacement as previously described. Equation,
(9), thus, makes 1t possible to estimate the scale of spatial variation b
from the data of Vf, p? and €5, without analysing the spatial data recorded
by the synchronized transducers.

ESTIMATION OF SPATIAL VARIATION PARAMETER

In order to estimate the spatial variation parameter b in Eq.(9), the
statistical damage data of buried small pipes [1l] are used. These data
are reported in terms of the correlatlon between the mean number of breaks
of buried pipes per one Km (Vf) and the peak ground acceleratlon estimated
from the structural damage data. On the other hand, Vf in Eq.(9) is a
function of the parameter b, the allowable strain of pipe €5, and the
variance D? of seismic ground displacement varying in space. The allowable
strain €, may be estimated from the mechanical properties of the pipes in
the damage data [1] as 1073, Hence, the question at hand is to determine
the relation between the variance D? and the peak ground acceleration a

The maximum amplitude of seismic ground displacement rpgy, is max
related to the rms (root mean square) of seismic ground displacement D.

The relationship is, of course, a probabilistic in nature Specifically,
the value of r__,/D, which has a probability of e~ 1 (0.37) of no exceeding

max
during one Km, is approximately expressed as,
_ 1/2
rmaX/D = [ 2lnb + 12,22 ] (10)

Equation (10) is derived on the basis of the common assumption that the
crossings of a specified level occur as a Poisson arrival process [6,7].

By utilizing Eq.(10) and the study of Kanai [8] that shows the relation
among Irpay> @pax and the predominant period Tq (sec) of ground, the
relationship between the rms displacement D and the actual maximum accelera
tion a is obtained as,

max
1/2 2 -4

x 10 (11)

D = 2.53[ 2Inpb + 12.22 ]
g max

where D is in m and ap,, is in cm/s2 (gal).

Substitution of Eg.(11) into Eq.(9) gives the required relationship
between v§ and apsy When T, and b are known. This relationship is shown
in Fig. 5 by the full lines for the four combination of values of Tq and b
indicated in Fig. 5. These final combinations of Tg and b indicated in
Fig. 5 are obtained by inspecting the results for several combinations



in conjunction with the empirical curve by Kubo and Katayama [1] which is

also shown in Fig. 5. This empirical curve does not explicitly show the

effect of ground conditions on pipe damages., Experiences, however, may

show that the pipes buried in soft ground are more vulunerable than those

in harder ground. Thus, these effect of ground conditions are approximately

taken into account for in the analytical curves of Fig. 5 by choosing the

appropriate combinations of values, T, and b. The upper two curves 1 and 2

in Fig. 5 correspond to the damage rate of the pipes buried in relatively

soft ground and the curves 3 and 4 to those in harder ground. In Fig. 5,

the variations of v} with the parameter b are also shown by the dashed lines.
From these parameter example studies, the relation between b and T

can be established as shown in Fig. 6. The line in Fig. 6 may be expreSsed

as

logh = —[l.564long + 1.971] (12)

This simple relation in Eq.(12) may be used to estimate the scale of spatial
variability of ground displacement during intense seismic excitation when

the predominant period Ty of ground is assigned.

SAMPLE FUNCTION FOR GROUND DISPLACEMENT VARYING IN SPACE

In a usual manner [9], the sample function r(x) of ground axial dis-
placement can be effectively simulated from the equation as

N

T o 1/2
7 (%) j££25r(kj)Ak] cos(ij + ¢j) (13)
kj = (7 - 0.5k
Ak = k /N
u

where k,, is the upper limit of the wave number k. From the observation of
the behavior of spectral density function shown in Fig. 3, it may be
sufficient to take the value k, > 5b. The parameter ¢; is the random
phase distributed uniformly between 0 and 2n. The term N is the maximum
number of summation.

For a numerical example, the following data are used: N = 1024, ky =
1.0 and D = 1.0m. By using these data, the sample functions of ground
axial displacement for four ground conditioms (1,2,3, and 4) are shown in
Fig. 7. It can ke seen from Fig. 7 that the spatial variation in the
relatively soft grounds (1 and 2} corresponding to the upper two curves in
Fig. 7 is smoother than that in harder grounds (3 and 4) corresponding to
the lower two curves, suggesting that the seismic wave with longer wave
length (long wave) is predominant in soft ground and the short wave in
harder ground.

CONCLUSIONS AND APPLICATIONS

A probabilistic model is developed for the seismic ground displacement
varying point to point in one dimensional space. The interpretation that
the seismic ground displacement at the time be fixed is a random function
of space variable together with the damage statistics of underground pipes
makes it possible to identify the scale of the spatial variation of seismic



ground displacement during strong earthquakes. From this study, the scale
of spatial variation is obtained as a function of the predominant period of
ground. The procedure in this paper provides an efficient tool for study-
ing the spatial variation of seismic ground displacement and for the
probabilistic seismic response analyses of underground structures. Further
extension and applications of this method are currently underway at Miyazaki
University to the multidimensional case and to the probabilistic seismic
response analysis of underground oil storage tank and subway etc..
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Fig. 1 Schematic Diagram Showing Seismic Source Region,
Traveling Path, and Spatial Variation of Seismic
Movements in a Region

Fig. 2 Buried Pipe Model in Axial Direction and
Its Notatioms
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