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INTRODUCTION

A family of new discrete elements especially suitable for limit
analysis of solids and structures have been derived by the second authors
in 1976,

three dimensional element. Despite of its simplicity, this beam element

A new beam element was derived by specializing his general

for bending can take into account of effect of the shear deformation.
Its effectiveness was verified through a series of numerical studies.

Recently TOI6) and WARANABE7) pointed out that this model is identical to

8)

the finite element proposed by Hughes et al. if the integration center
point is taken at the middle point of the span.

In practice piles or sheet piles are often idealized as beam structures
on the elasto-plastic foundations. In the finite element analysis of such
structures, it is necessary to derive a new beam stiffness matrix in which
effects of the foundations is considered. For this purpose the following

4th order differential equation for beam bending should be solved under

appropriate boundary conditions:
ETV'" + kv = 0

where V implies the beam displacement.. Consequently the resulting stiffness
matrix of a beam element becomes complicated even in case of the elastic
foundations. And in case of inelastic foundation it is extremely diffi-
cult to obtain the corresponding stiffness matrix in practical form.

In case of a new beam element, effects of the foundation can be easily
represented by a spring system which supports the beam structure con-

9),10)

tinuously and obeys the assumed stress-strain relation (elastic

or inelastic).
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And therefore analysis of framed structures on or in the foundations can be
successfully made with reasonable computer time and cost.

In this paper accuracy of the elastic solutions by means of the new
beam element is examined first and then validity of the proposed method
will be demonstrated by solving some numerical examples. Futhermore new
discrete limit analysis for framed structures including the effects of

elasto-plastic foundations will be discussed.

FORMULATION OF THE NEW BEAM ELEMENT

For simplicity, consider two dimensional framed structures as shown
in Fig. 1. Rigid displacement field is assumed in each element, whose
nodal displacements are given by the displacement (ﬁ, V,é) of the centroid
as shown in Fig, 1. The superscript - indicates local coordinate system.
Spring constants shown in this figure are denoted by (k. kg, kM)
which resist axial force, shear force and bending moment respectively on
the contact surface between element I, and element II, the stiffness matrix

of which is given by eq.(1).

ky 0 0 | ky = 2EA/%
D= 0 kg O kg = 206A/% (1)
0 o0 ky ky = 2EI/2 (2 = 21 + L2)

where, %; and 2, are length of individual beam elements respectively, EI
bending stiffness, GA shear stiffness, EA axial stiffness and o is the
effective shear modulus. The strain energy expression of this new beam

element V can be given by the following equation:

V=VN+VS+VM

Vy = kN6N2/2

V _ 2 (2)
s = kgdg“/2

VM = kng?/2

where 6N, 65 are relative displacements due to axial and shear forces
respectively, and P is relative rotation due to bending moment.
These relative displacement vectors {6} can be given by the following

matrix equation:



(6} = [B1{3;}
10 0 i1 0 0
Bl=| 0 -1 m/21 0 1 -0,/2
0 0 -1 i0 0 1

" - LSn s P1

{aj}t = | U1 V1 813 U2 V, B2

And the relationship between local and global coordinate systems can be

given by the following equation:

{0} = [THu}
cosB  sing 0

[T] = | -sinB  cosB O (4)
0 0 1

{u}t = Lu} v, 0] (global coordinate system)

{G}t = La ,V, SN (local coordinate system)

Therefore, substituting eq.(1l), eq.(3) and eq.(4) to eq.(2), the strain

energy of the new beam element can be obtained as the following matrix

equation:
v = & tuptT1tBIt 0181V I u;)
= % (Y [KDMuy) (5)

¢ [K] = [v1t81toImBICT])
where [K] is a (6 x 6) symmetric matrix,

Applying Castigliano’s theorem to eq.(5), the following stiffness equation

can be derived;

V- py = [K](W | (6)
ouy
where {P} is nodal load vector defined by the following equation:

I s [ X Yo My s Xp Y My (7)



ANALYSIS OF FRAMED STRUCTURES ON THE ELASTIC FOUNDATIONS

In case of finite element analysis of framed structures on or in
elastic foundations it is customary to idealize the effect of foundation
as the continuous spring system resisting the relative normal and shear
displacements due to bond strength between structures and foundations.
Numerical model for a beam element on the elastic foundations is shown in
Fig. 2, for which the rigid displacement field is assumed.

Where kh, k. are coefficient of horizontal subgrade and coefficient of

S
friction respectively. As the rigid displacement field is assumed, linear
distribution of the subgrade reaction can be obtained in each element.

By integration of the subgrade reaction along the beam element, it can be
shown that the effect of the subgrade reaction can be represented by three
springs attatchéd to the centroid of the beam whose spring constants are

given by the following equations.

)
S A .
KhV‘J_! kn(v + 5 x 8)dx = (kp 2)v
2
£ 3
z kil
= _ [z - 1 =2y,-_,'h
Kre-Jékh(v+§xe)dx—(]2) (8)
2
2
2 - -
KSu=ijsudx-(k59v)u
3z
where
Kp = kp £3/12 (9)
K = kg 2

Now subgrade reaction R can be given by the following matrix equation:

kk 0 0 | [a
Rl=- [0 K, O [ 1V ¢=-[KHW (10)
0 0 K l 5



Subgrade reaction matrix with respect to the local coordinate system
can be transformed to the one with respect to global coordinate system by

the following matrix [T]:

cosp sing O
[T] = | -sing cosB O (11)
0 0 1

where B is the angle of coordinate axis as shown in Fig. 3.
Accordingly subgrade reaction of global coordinate system [R] can be given
by using rigid displacement {u} (global coordinate system) at centroid

as follows:

-1tk
[P RICTI (W (12)
-[kJ{u}

( [k = [T2E[RICTD)

[R] = [T1'[R]

Therefore total stiffness equation can be given by following equation:

Ku=P +R :
3
=P - ku (13)
Thus the problem will be reduced to solve the following equation:
(K+Kk) u=P (14)

In what follows verification of the proposed method will be demon-
strated by solving some numerical exampls. As the first example, consider
a pile in the homogeneous elastic foundations such as shown in Fig. 4.
Material properties assumed for computation are shown in Fig. 4.
Fig. 5 v Fig. 10 show the comparison of the present numerical and analytical
solutions. Convergency of the calculated bending moment at arbitrary depth
is shown in the (a) which are on the left side of figure. It was found
that sufficiently accurate numerical results can be obtained if a pile is

divided into 10 elements. Comparison of present numerical and analytical



solutions for displacement is shown in the (b) on the center of figure.
Even in case of coarse mesh division, accurate result can be obtained.
Calculated bending moment distribution in the case of 16 elements division
is shown in the (c) which are on the right hand side of figure.

Table 1 shows comparison of present numerical and analytical solutions
for displacement at the top of a given pile. Since the effect of shear
deformation is taken into account in this model, displacement at the top of
a given pile is larger to compare with the analytical solution in case of

horizontal loading.

ANALYSIS OF FRAMED STRUCTURES ON THE ELASTO-PLASTIC FOUNDATIONS

A method of new discrete limit analysis for framed structures con-
sidering failure of foundations and beam elements will be discribed in
this section. Yield condition of framed structures will be discussed first.
Choose a yield condition for the bending moment and axial force given by

the following equation:

(15)

where Mpx and py is plastic bending moment and yield axial force re-
spectively. Applying flow rule to this yield function, the constitutive

equation after yielding can be obtained as follows:

kin kia  kis
[OP] = koo  kas (16)
SYM. Kss

kip = kN - %‘(é%%?z kN

kzo = kS kia = ka3 =0

1,1

Kss = ky -~ © () 2k
30 7 M F
. . 112p 1
kis = + (&) (—)ky kw/F
13 Py Mpx N M

_ 12p 42 1,2
Fo= (—pz-py ) ky * (—Mpx) Ky



Nextly the failure of foundations will be considered. Assume the
foundations to be linear elastic up to the ultimate strength of soil
pressure, After failure of the its, subgrade reaction is considered to be
constant and coefficient of horizontal subgrade is assumed to be zero.
Analytical solutions can be obtained by this method only in case of homoge-
neous foundations irrespective of the depth. However, numerical method
where new beam elements are employed on or in the elasto-plastic foundations
is free from such limitation. And failure of foundations and framed
structures can be easily taken into account at the same time by this
numerical method. In this paper the ultimate resisting earth pressure

for a cohesive soil is assumed as shown in Fig. 11.

(1) Analysis of a pile in the elasto-plastic foundations

Consider a pile as shown in Fig. 12. Assumed material properties of a
pile are shown in the figure, and constant of foundations are shown in Fig.
11. A pile with the tip-free condition are divided into elements whose
length is 0.5m. In this numerical example a horizontal load is applied
to the pile, and ultimate horizontal load and collapse mode are obtained by
the present method which are shown in Fig. 13. Numbers in the figure
implies the sequence of collapse. Numerical result in case of horizontal
load at same height and 3m height above the ground surface are illustrated
in upper and lower part of the figure respectively. 1In case of a short
pile, collapse of the pile does not occur and ultimate horizontal load are
defined by the failure of foundations. On the other hand in case of a
longer pile, plastic hinge is formed and ultimate horizontal load is
defined by the failure of foundations and formation of the plastic hinge
in a pile.

Numerical results of the displacement are shown in Fig, 14.

In case of a shorter pile possibility of tumbling is observed. On the
other hand in case of a longer pile the displacement at the top of a pile
is found to be smaller.

The relation between the ultimate horizontal load and ratio of pile are
shown in Fig. 15. Good agreement between calculated and Broms's limit
loads was obtained. In case of a short pile in which plastic hinge is not
generated the higher limit load was obtained the pile length becomes longer.
However, when the ratio of pile exceeds a certain limit, a plastic hinge is

generated in the pile and limit load was found to be constant.



The relation between horizontal displacement at the top of the pile
and ratio of pile are shown in Fig. 16. Before generating plastic hinge
in the pile very large displacement is observed due to failure of
foundations. On the other hand in case where a plastic hinge is formed in
the pile, the displacement was found to be constant irrespective of ratio

of pile.

(2) Analysis of a portal frame with piles

Next analyzed a portal frame which consist of the same materials as
shown in Fig. 17. The piles are divided into element size of 0.5m length
and portal frame on the ground are divided into elements of lm length.

Collapse mode obtained by the present method are shown in Fig. 18.
Number in the figure implies the sequence of collapse as shown in example
(1). 1In case of the fixed-support condition, support region broke at first
and then yielding of the corner generated. On the other hand in case of
portal frame with piles, collapse mechanism is formed by the failure of
foundations and piles.

Displacement at final step of calculations are shown in Fig. 19.

In case of the fixed-support condition generally small displacement are
obtained comparing with another case, because effect of foundations is not
taken into account.

The relation between limit load and ration of pile are shown in Fig.
20. And graphes for displacements are shown in Fig. 21. Similar numerical
results of a pile were obtained. The bending moment distribution is shown
in Fig. 22. 1In case of the portal frame with piles, bending moment
distribution is quite different from those of the structures with fixed

support.

CONCLUSION

From the results of some numerical examples illustrated in this paper

the following conclusion can be drawn:

(1) 1In case of the elasto-plastic foundations, behavior of the overall
structures is quite different from those of the structure with fixed

support.

(2) Location of the maximum bending moment calculated is different from

the case of fixed support.



(3) Due to possible failure of the foundation, unexpected larger dis~
placement of framed structures will be observed.

(4) Calculated limit load is smaller than that of the fixed support.

(5) It is impractical to use piles longer than the minimum required length
in case of horizontal loading.
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Tip-Free Tip-Hinged Tip-Clamped
Material Properties
Modulus of deformation 350 000 kg/cm?
Coefficient of horizontal subgrade 0.5kg/cm?
Moment of inertia 103 200 cm*
Diameter (B) 40 cm
Pile length (L) 1000 cm
Shear force (P) 2000 kg
Bending moment (M) 300 000 kg-cm

Fig. 4 Numerical model for a beam element on the elastic foundations

Table 1 Displacement for y direction at x = 0

TIP-FREE TIP-HINGED TIP-CLAMPED

EXACT NUMER [ CAL EXACT NUMERICAL |  EXACT NUMERICAL |

0.6709 0.6756 0.6725 a4

p=2.t 0.6889 0.6871 0.6856 0.6858 0.6812 0.6818 .8
0.6872 0.6864 0.6821 16

0.3087 0.3093 0.3065 4

M=3.tm 0.3532 0.3423 0.3538 0.3429 0.3503 0.3396 8
0.3505 0.3511 0.3476 |18

No. implies the numbers of elements

used in the present numerical analysis
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Fig. 5 Deflected shape and bending moment distribution of a pile with the

tip-free condition
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Fig. 6 Deflected shape and bending moment distribution of a pile with

tip-hinged condition



(cm) . =05 -0.25 0 0 1 2(tm)

T 0
4 4 Elements
[} .
016 .
-— Analylical Solution \ 25
M/Mexac!
5.0
} P=21
1) 4 R aaed
J| e 2m 75
] —+~ X= 5,00
/ ——-x=751
- —em X=10.0 A
/ j_
. Tip-Cl
‘é, 100 (Tip-Clamped)
4 8 16 {m)
(a) (b) (c)

Fig. 7 Deflected shape and bending moment distribution of a pile with

tip-clamped condition
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tip-free condition
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Fig. 10 Deflected shape and bending moment distribution of a pile with
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Fig. 12  Numerical model for a pile on the elasto-plastic foundations
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Fig. 18 Limit load and collapse mode obtained

by the present method
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