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ABSTRACT

In the first part of the article a review of laboratory cyclic
undrained test methods is presented. The features of the cyclic
torsional simple shear device which was newly developed to assess the
resistance of saturated dense sand against cyclic undrained loading
are described. The test results are represented by the relationship
between the relative density Dy and the cyclic shear stress amplitude
normalized by the effective mean principal stress at consolidation,
Tcy/Gmc’, for which a certain value of double amplitude shear strain
is observed at a certain number of loading cycles. Dense specimens
of Toyoura Sand, a clean, uniform, fine sand, prepared by the air
pluviation method have an extremely high resistance against cyclic
~undrained loading, while dense specimens of Sengenyama Sand, a medium

fine sand including some fine particles, also prepared by the air
pluviation method have a lower resistance as compared with Toyoura
Sand. These findings show that the concept that the cyclic undrained
strength of sand is proportional to the relative density is not ap-
propriate especially for clean sands.

INTRODUCTION

Needs to evaluate precise cyclic stress strain behavior of
saturated dense sand have been increased for seismic designs of crit-
ical structures such as nuclear power plants, large storage tanks or
high rockfill dams which should be stable even for large earthquake
motions. When a design acceleration level is low, it is reasonable
to consider that dense sands have enough liquefaction strengths,
without having to perform critical evaluations of the liquefaction
strengths of dense sands. In past, some considered that strength of
sand against liquefaction was proportional to the relative density
up to a certain value of relative density, say 80 %. TFor example, a
linear relationship have been proposed as
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(0dp/20.°) 20 = 0.0042Dyp (1)

in which (Udp/ZGC’)zo is the stress ratio in cyclic triaxial tests
which induces liquefaction at the number of cycles of 20 and Dy is
the relative density of the specimen (Ishihara (1977)). However,
it is understood at present that the resistance of denser saturated
sand against cyclic undrained loading is higher than evaluated by
postulating that the liquefaction strength is proportional to rela-
tive density.

Silver and Tatsuoka (1981) performed a series of cyclic triaxial
and NGI-type simple shear tests on Monterey No. 0 Sand specimens
reconstituted by air-pluviation and wet tamping methods. Fig. 1 is a
reproduction from Silver and Tatsuoka (198l). It can be clearly seen
from this figure that the relationship is not linear between the
relative density and the stress ratio which induces 15 percent shear
strain double amplitude at the number of loading cycles of 10. An-
other important point which can be seen from this figure is that the
cyclic undrained triaxial strength of sand prepared by tamping most
soil may give an overestimate of the liquefaction strength in hori-
zontal sand deposit for which a laboratory simple shear simulation is
an appropriate measure of cyclic strength. It can also be noted that
even for the dense sand with a relative density of 80 % prepared by
pluviating dry sand, the triaxial strength may be larger than the
simple shear strength.

On the other hand, many consider that in the NGI-type simple
shear tests, the stress and strain conditions in specimens may be
considerably ununiform due to the lack of conpensating shear stresses
on the vertical boundaries of specimen. Due to this fact, it can be
considered that the ununiform stress and strain conditions may give
an underestimate of the cyclic undrained simple shear strength espe-
cially for dense sands.

DeAlba, et al. (1975) performed large simple shear tests using
very long and shallow test specimens (90 inches long by 40 inches
wide by 4 inches deep) which were cyclically excited on a shaking
table for evaluating cyclic simple shear strength which are free from
the disadvantages inevitable in small simple shear tests. It was
shown by DeAlba, et al. (1975) that the shear strain amplitude
induced in dense specimens are not unlimited even after considerable
number of loading cycles, but the amount of shear strain was limited
to a certain value for dense specimens, with limited amount of shear
strain being decreased with the increase in density. Since this type
of large simple shear test in which a specimen is placed on a shaking
table, it is rather difficult to keep the cyclic shear stress ampli-
tude constant in the course of liquefaction because of a large varia-
tion of the natural frequency of the specimen due to a large reduc-
tion in the rigidity of specimen. Furthermore, due to other two
features, very expensive to perform and having a large system compli-
ance, this type of test will not be used as a routine laboratory test
to assess liquefaction characteristics.



To overcome the disadvantages inevitable in convensional type of
simple shear test which has end boundaries, torsional simple shear
devices have been developed in which hollow cylindrical specimens (
Fig. 2) are used (Ishihara and Li (1972), Ishihara and Yasuda (1975),
Yoshimi and Oh-Oka (1973) and Ishibashi and Sherif (1974)). Since a
hollow cylindrical specimen has no end boundaries, the specimen can
be considered free from stress concentration problems. Ishihara and
Yasuda (1975) showed that the cyclic torsional simple shear strength
of a loose sand specimen prepared by pluviating through water is sim-
ilar to the cyclic triaxial strength when the cyclic shear stress am-
plitude is normalized by the effective mean principal stress at con-
solidation.

Presented herein are the cyclic torsional simple shear test re-
sults which were performed to assess the liquefaction characteristics
of sands having a wide range of density (Dr = 40 % to 100 %). It was
found that dense specimens of a clean, uniform fine sand including no
fine particles has an extremely large resistance against cyclic un-
drained loadings, while dense specimens of a medium fine sand having
some fine contents do not show such a large resistance.

TEST PROGRAM

Two kinds of sand were selected for this study. The first one
is Sengenyama Sand from deposits of diluvial origin, which has
been widely used for hydraulic fill reclamation projects in Tokyo Bay
area. The physical properties are listed in Table 1. The other sand
is Toyoura Sand, a commercially available washed and sieved beach
sand. This is a uniform, subangular, fine sand which has been widely
used for liquefaction studies in Japan. The physical properties of
this sand is listed in Table 1.

To prepare specimens, the air-pluviation method was adopted,
which consists of pluviating air dry sand into a mold from a tube
keeping the height of fall constant. Densification of the specimens
was accomplished by increasing the height of fall. A high degree of
saturation was achieved by circulating CO, and de-aired water through
a specimen and applying a back pressure of 98 kN/m® or 196 kN/m?.

The lowest B~value allowed in this test program was 0.96. Most of
the measured B-values were larger than 0.98.

A torsional simple shear device (Fig. 3) which was recently de-
veloped in the Institute of Industrial Science, the University of
Tokyo was used for this investigation. The senior author drew the
plans under the supervision of the second author. The stuff members
of the workshop in the Institute machined the major parts of the
device. A pneumatic cyclic loading system was employed. Cyclic
linear motion of the piston of a Bellofram cylinder is converted to
cyclic rotational movement of the vertical loading ram through a
stretched wire, four pulleys and a wheél (see Photo. 1). The other
Bellofram cylinder is placed on the top plate of the device for



providing a vertical load to the specimen. A torque pick up is lo-
cated outside of the cell. It was found that the friction of the
air-seal-type piston was negligible. The torque pick up was cali-
brated by producing a moment force with use of dead weights. For
this purpose, a device was developed.

A hydrostatic confining pressure is provided to confine a hollow
cylindrical specimen which is enclosed with outside and inside con-
ventional rubber membranes. The hollow cylindrical specimen was 100
mm in outer diameter, 60 mm in inner diameter and 100 mm high. Six
1.5 mm high stainless blades were fixed on the surfaces of porous
stone of the top cap and the bottom pedestal to prevent slippage of
the sand.

One of the most attractive features of this new apparatus is
that the cyclic undrained shear test on saturated specimens in the
plane strain condition can be easily performed in a rather simple
manner with knowing the effective stress condition throughout consol-
idation and cyclic loading. With this apparatus, the plane strain
condition for undrained saturated specimens is achieved by preventing
the axial deformation of specimen by locking vertically the vertical
load ram with allowing only its rotational movement. A usual lucid
cell is used as in the conventional triaxial test. The adoption of a
low friction air sealing for piston makes it possible to place a
strain-gauge type load transducer both for torque and axial load out
of the cell without involving testing errors due to piston friction.
A slender loading ram with a diameter of 20 mm is used in order that
the air sealing works satisfactory. In the author’s laboratory, same
conventional triaxial cells can be used both for triaxial tests and
for torsional simple shear tests. For triaxial tests, linear motion
bearings are used and these are replaced with stroke bearings for
torsional simple shear tests. These arrangements makes the device
used in this study much simpler than any of existing other cyclic
torsional simple shear devices.

Two different consolidation stress conditions were adopted as:
(1) Specimens of Toyoura Sand were consolidated isotropically to

Ove’ = Ohe’ = 98 kN/m? (GVC’ and Ohc’ are the effective vertical

and horizontal stresses at consolidation, respectively.), and
(2) Specimens of Toyoura Sand and Sengenyama Sand were consolidated

to anisotropic stress conditions. For Toyoura Sand, specimens
were consolidated with the ratio of op’ to oy’ being kept equal
to measured Kg-values by another test program up to a stress
condition where the value of mean principal stress Op.’ = (Ov.’

+ 20h,’)/3 equaled 98 kN/m?*. The Ko-values used were measured

for normally consolidated triaxial specimens by Oh-kochi, et al.

(1981) as,

Ko = 0.52 ej (2)

where e; is the initial void ratio. Since the Ky—values for
Sengenyama Sand were not measured, the following method was



adopted. Specimens were first consolidated isotropically to

Oy’ = 0p” = 98 kN/m?. Then, the Oy’ value was increased to 196

kN/m?. Thus, the ratio of Ohc’ to Gvc’ was 0.5 irrespectively

of the density of specimen.

After consolidating the specimens under the stress condition as
above for 2 hours, a cyclic undrained test was performed. For an
isotropically consolidated specimen, the vertical loading ram was
free to move vertically during torsional cyclic loading. For an
anisotropically consolidated specimen, the height of specimen is kept
constant under undrained condition during torsional cyclic loading.
During a cyclic test the total horizontal stress, which was the cham-
ber pressure, was kept constant. The total vertical stress, which
was measured with a load cell placed above the chamber, decreased
when the specimen began to liquefy. Since during the cyclic test
both the vertical and volumetric strains were zero, the change in
cross area of the specimen was also zero during cyclic loading. It
is not unreasonable to assume that the outside and inside diameters
were kept constant during cyclic loading. In this case, no change in
the cross area results in no horizontal strain. This is similar to
the in situ condition in level ground during earthquake shaking. It
is to be noted that to maintain constant height is not to produce a
constant volume condition, which is achieved by the undrained condi-
tion of saturated specimen. Therefore, the degree of effects of
system compliance on test results can be considered similar to that
in the conventional cyclic triaxial test. It was considered that
errors due to membrane penetration effects was not significant due to
the small values of Dso of sands tested. Furthermore, to reduce
system compliance the length of stiff synflex tube with an outer
diameter of 3.18 mm and an inner diameter of 1.6 mm was reduced to a
minimum value and the number of ball valves was also reduced to only
four. Test conditions are listed in Table 2.

TEST RESULTS

A typical time history of shear stress, shear strain and excess
pore pressure obtained for an isotropically consolidated Toyoura Sand
specimen at a consolidated relative density of 82.3 % is shown in Fig.
4. It can be seen from this figure that the amplitude of cyclic
shear stress is maintained constant during cyclic loading without
being affected by the development of large shear strain. This fact
shows that the pneumatic cyclic loading system worked very satisfac~
torily. It is very important to maintain a constant cyclic shear
stress amplitude especially for liquefaction tests on dense specimens
in order that the cyclic shear strength for dense sands can be better
defined by cyclic shear strain amplitude values.

Since it was found after several trials that it is not easy to
reconstitute a hollow cylindrical specimen at a prescribed density by
the air pluviation method. Therefore, several specimens having



different arbitary relative density values were tested using an iden-
tical cyclic stress ratio. These relative density values ranged from
around 40 %Z to around 90 % for Toyoura Sand and from around 45 % to
around 100 %Z for Sengenyama Sand. For one value of cyclic stress
ratio amplitude a relationship was established between the consoli-~
dated relative density Dy and the number of loading cycles N, at
which a certain value of shear strain double amplitude Y(DA) was
observed (Fig. 5). This procedure was repeated for several different
values of cyclic stress ratio, Other figures similar to Fig. 5 were
prepared for Y(DA) = 1.5 %, 3 % and 7.5 % and initial liquefaction.
From such figures, the relationship as shown in Figs. 6(a) and 6(b)
were obtained. 1In these figures, Tcy Mmeans the amplitude of cyclic
shear stress and Ome’ 1is the mean principal stress during consolida-
tion which equals oOy.’ or op.’ for isotropically consolidated speci-
mens. It may be seen from Fig. 6(a) that for Dy = 60 %, relation-
ships between Tcy/Omc’ and Ne are smooth for any values of y(DA).

For Dr = 80 %, as shown in Fig. 6(b), a large increase in TCy/OmC’
can be seen with the decrease in N for N¢ less than around 10. Fig.7
shows the relationship between the stress ratio Tcy/GmC’ and the num-
ber of loading cycles N, to 15 7% double amplitude shear strain for Dy
values of 50 %, 60 Z, 70 %, 80 % and 85 %. Inspection of this figure
shows that dense Toyoura Sand has significant large resistances
against cyclic undrained torsional simple shear loading for smaller
numbers of loading cycles. It is also important to note that even
for a large number of loading cycles, say larger than 50, dense
specimens tested in this study has a resistance much larger than
loose specimens. Similar trends, but much less clearly, has been
reported for large simple shear tests by DeAlba, et al. (1975). Fig.
8 shows the test results by conventional cyclic triaxial tests with
regular porous stone ends on wet tamped Monterey No. 0 Sand with
relative density values of 45 %, 60 %, 70 %Z and 80 %. It may be seen
from this figure that the variation in stress ratio by density varia-
tion at a number of loading cycles of around 16Q is very small as
compared with the data shown in Fig. 7. Such small difference may be
reflects the redistribution of void during triaxial cyclic loadings
in dense specimens, which is ofcouse better to avoid.

The relationships between the stress ratio T, /omc’ and the rel-
ative density Dy for failure defined as 3 %, 7.5 % and 15 7 double
amplitude shear strains in the tenth and twenties loading cycles are
shown in Figs. 9(a) and 9(b) respectively. These relationships were
determined directly the Dy versus Ne relationships as shown in Fig. 5.
It can be clearly seen from these figures that the cyclic undrained
strength of Toyoura Sand obtained by this test program is signifi-
cantly large for a relative density value larger than around 80 Z.
The relative density from which cyclic undrained strength increases
significantly for the further increase in relative density will be
defines as critical relative density (Dr)critical- The value of
(Dr)eritical is a function of at least number of loading cycles and
shear strain amplitude values. It will be shown later that the value



of (Dr)ecritical is also a function of kind of sand and boundary strain
condition. It may be considered that at a relative density which is
around 10 % larger than the critical relative density, the sand has
an extremely large resistance against cyclic undrained loading. The
presence of the critical relative density as defined above can also
be seen in Fig. 1 for wet tamped and air pluviated Monterey No. O
Sand in the case of cyclic triaxial tests. However, the values of
(Dr) critical can not be determined in Fig. 1 as clearly as in Fig.
9(a) and 9(b) due to the limited numbers of relative density examined.
On the other hand, the critical relative density can not be seen in
Fig. 1 in the case of cyclic simple shear tests. This may be due to
the underestimate of cyclic undrained strength of dense sand in the
case of cyclic simple shear tests which have some inevitable detects
decribed before.

Figs. 10(a) through 10(c) show typical time histories of shear
stress, shear strain, excess pore pressure and total vertical stress
decrease obtained for loose, medium and dense Sengenyama Sand by cy-
clic torsional simple shear tests under the plane strain condition.
The relationship between the double amplitude shear strain, v(D4a),
and the number of loading cycles, Ng, obtained from the data in Figs.
10(a) through 10(c) are replotted in Figs. 11(a) through 11(c). The
number of loading cycles where a certain value of y(DA) was attained
was determined as shown in Figs. 11(a) through 11(c) for any test re-
sult in this investigation. Figs. 12(a) through 12(c) give the time
history values of oy’ and oy’ calculated from the traces in Figs. 10(
a) through 10(c) taken when the cyclic horizontal stresses were zero.
The method of calculating the values of oy’ and op’ from measured
values are illustrated in Fig. 13.

Effective stress paths constructed from the values shown in Figs.
12(a) through 12(c) are shown in Figs. 14(a) through 14(c). Smooth
curves seen in these figures, which are very similar to the Ky-re-
bound curves by conventional Kjo-tests, may indicate that the arrange-
ments provided for the cyclic plane strain tests worked very satis-
factorily. Similar test results were obtained by plane strain un-
drained cyclic torsional simple shear tests on Kg-consolidated Toyo-
ura Sand specimens, while the data are not shown here due to the lim-
ited space.

Test results for Sengenyama Sand are summarized in Fig. 15 as
the relationship between the relative density and the number of load-
ing cycles where 15 % double amplitude shear strains were attained
for several values of Tcy/Opc’, in which op.’ = (OVC, + 20p,°)/3 is
the mean effective principal stress during consolidation. Figures
for double amplitude sbear strains of 1.5 %, 3 % and 7.5 Z similar to
Fig. 15 were also prepared. The relationships between the stress
ratio Toy/Ope’ OF Tey/Oye’ and the number of loading cycles N¢ for
relative’ density values of 60 % and 95 % are shown in Figs. 16(a) and
16(b). It may be seen in Fig. 16(a) that the strength defined for 15
% double amplitude shear strain increases with decreasing N¢ for Nc



less than around 10 in the case of Dy = 95 %Z. Fig. 17 shows the re-
lationship between the stress ratio and the number of loading cycles
where 15 % double amplitude shear strain was observed for relative
density values of 40 %, 60 Z, 80 %, 90 % and 95 %. It is important
to note that the rate of the increase in strength for larger relative
densities is not as significant as in the case of Toyoura Sand.

Stress ratio values for 15 7 double amplitude shear strain at
the number of loading cycles of 10 for anisotropically consolidated
specimens of Sengenyama Sand and Toyoura Sand were compared with
those for isotropically consolidated Toyoura Sand specimens as in Fig.
18. Note that the amplitude of cyclic shear stress for anisotrop-
ically consolidated specimens are normalized by the mean principal
stress at consolidation op.’. It is seen from Fig. 18 that a clear
critical relative density may also be defined for anisotropically
consolidated Toyoura Sand. However, for Sengenyama Sand, the value
of the critical relative density is much larger than for Toyoura
Sand. This difference between Sengenyama Sand and Toyoura Sand may be
due to its difference in fine content. Sengenyama Sand contains fine
particles to some extent which may somewhat prevent larger particles
to locate in more stable positions when pluviated through air. On
the other hand, Toyoura Sand is a clean uniform sand which does not
involve any fine particle. Therefore, particles of Toyoura Sand may
be easier than Sengenyama Sand to locate in stable positions when
pluviated through air. These facts also show that cyclic undrained
stress-strain relationship depends on not only relative density but
also other factors. Further researches are necessary to clarify
these unknown factors.

CONCLUSIONS

On the basis of the limited number of tests reported in this
paper on the cyclic undrained strength of dense sands by cyclic tor-
sional simple shear tests, the followings were found:

(1) Cyclic undrained torsional simple shear tests under the plane
strain condition on anisotropically consolidated specimen can be
easily performed with knowing effective stress conditions
throughout tests by using the newly developed device in which a
pneumatic cyclic loading system, an air-sealing for piston and a
locking device for the vertical loading ram are provided.

(2) Cyclic undrained strength of Toyoura Sand, a clean, uniform,
fine sand, is extremely high for a smaller number of loading
cycles when 7.5 % or 15 % double amplitude shear strain are used
as failure criteria, while Sengenyama Sand, a medium fine sand
including some fine particles, does not have such an extremely
high strength as for Toyoura Sand.

(3) The concept that the cyclic undrained strength of sands is pro-
portional to relative density may gives an underestimated value
for dense clean sands.
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Table 1. Physical Properties of Sands Tested

Sengenyama Sand | Toyoura Sand

Particle Shape Subangular Angular
Specific Gravity 2.71 2.64
Maximum Void Ratio* 0.918 0.977
Minimum Void Ratio* 0.564 0.605
?sa:mDiameter 0.23 0.14
Costricien of
Fine Content 1.63 0

in percent

* by the method proposed by the Japanese Society
of Soils Mechanics and Foundation Engineerings(1980).

The values of ep,y and epj, by the method proposed
by Yoshimi and Toh-no(1972) were as follows.

]

emax = 0.96
enin = 0.64 for Toyoura Sand

Table 2.

Testing Procedure

Wave Form

Sine(0.5Hz)

Loading Equipment

Pneumatic

Torque pick up

Outside of the cell

Piston seal No seal
S?eclmen ?uter 100
diameter in mm
Specimen inner

: . 60
diameter in mm
?pec1men hight 100
in mm
Specimen made s
on cell y
Time to saturate 2hr
Back pressure 98 or 196

in kN/m?

Consolidation pressure

GVC’=OhC’=98kN/m2 or

Oh,’ /0y *=Ko and O =0y, " +20y, ") /3
=9§kN/m% for Toyoura Sand,

and 0y _’=196kN/m® and

Oh. =9 kN/m® for Sengenyama Sand

B-value

0.96 or more
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1. Top Portion of Torsional Simple Shear Device, 1: Wheel for
Converting Linear Motion to Rotational Motion, 2: Bellofram
Cylinder for Providing Vertical Load, 3: Locking Device for
Vertical Movement, 4: Bellofram Cylinder for Providing
Cyclic Load.
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Fig. 6(a) and (b). Stress Ratio Versus Number of Loading Cycles to
3%, 7.5 % and 15 7 Double Amplitude Shear Strain for Iso-
tropically Consolidated Air- Pluv1ated Toyoura Sand ((a) Dy =
60 %, (b) Dy = 80 %).
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Fig. 9(a) and (b). Effect of Relative Density on Cyclic Strength by

Cyclic Torsional Simple Shear Test for Failure Defined for
3%, 7.5 % and 15 % Double Amplitude Shear Strain (a) in the
Tenth and (b) in the Twentith Loading Cycles for Isotrop-
ically Consolidated Air-Pluviated Toyoura Sand.
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Fig. 11(a), (b) and (c). Relationships between Double Amplitude
Shear Strain and Number of Loading Cycles for (a) Loose,
(b) Medium and (c) Dense Air-Pluviated Sengenyama Sand.
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