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ULTIMATE STRENGTH OF STEEL COLUMN BASES

by
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SYNOPSIS

This paper deals with theoretical estimation of the ultimate
strength for ordinary types of column bases in small steel
buildings.

In this paper, the tensile strength of anchor bolts and the
flexural strength of a base plate are chosen for the parameters
governing the column base strength. Then, the column base sub-
jected to a bending moment and an axial force is substituted by a
simple mechanical model.

A rational solution for the interaction surface of flexural
and axial resistances in the column base is presented through the
upper and the lower bound theorems in the limit analysis.

The solution is compared with the maximum strength observed
in past experimental results, and proved to provide satisfactory
predictions.

INTRODUCT ION

Ordinary types of column bases, which are usually encountered
in small steel buildings, consist of anchor bolts embeded in a
concrete footing and a base plate not covered by reinforced
concrete,

In conventional structural analyses, most of these types of
column bases are easily substituted by the idealistic supports,
such as simple or completely fixed ones. It has been reported,
however, some of the structural damages due to recent severe
earthquakes in Japan are caused by the actual inelastic behavior,
not expected in the design procedure, of these types of column
bases [1,2]. 1In the advanced aseismic design, it is indispensable
to obtain an appropriate estimation of not only elastic stiffness
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but also ultimate strength and deformability over inelastic range.

Most of the preceding research works in Japan on these types
of column bases have been devoted to the estimation of elastic
stiffness [3], and recently, several experimental studies have
been made in order to investigate the inelastic behavior [4,5,6,7].
Theoretical studies, however, are not sufficiently enough to
provide a criterion for predicting inelastic“behavior of these
types of column bases.

This paper presents the theoretical solution for the ultimate
strength of the column base subjected to a bending moment and an
axial force. TFor the similar purpose, Salmon, C.G. studied the
upper bound for maximum resisting moments of these column bases as
early as in 1955 [8], and a few proposals have been made also in
Japan [9,6].

Most of these works, however, are restricted to a certain
mechanism or a certain stress field of the column base, and espe-
cially, neglect the inelastic deformation in the tension-~side
portion of the base plate, which affects considerably the column
base strength. In this paper, various mechanisms and stress
fields are considered, and the more rational solution is presented
for the ultimate strength.

ASSUMPTIONS OF THE ANALYSIS

The most simplified types of column bases, shown in Fig.l,
are studied in this paper; a rectangular base plate is welded to
an end of a steel column, and firmly attached to the foundation
through several anchor bolts. The same number of anchor bolts are
located in a single row at the symetrical position outside of the
column. In this analysis, the effects of stiffners, such as rib
plates or wing plates, are not considered.
The assumptions of the analysis are summarized as follows:
1) A bending moment M and an axial force N transferred through
the column are considered as external loads.

2) The base plate is substituted by a beam uni-directionally
deformable in a single plane.

3) The anchor bolts resist only tensile forces.

4) No failure occurs in the foundation or the concrete footing.
5) The flexural failure of the base plate does not occur in the
portions beneath the column sectdion and the nuts of anchor

bolts. These portions in the base plate are called as 'rigid
zone' in this paper.

Parameters of the location and the size of these rigid zones,

which are non-dimensionally expressed to the total lemgth D of the
base plate, are shown in Fig.l.



Evidently, these parameters satisfy the following equation and
inequalities,

h=1-2a-2b (1)
a>0, b>0, ¢>0, a-c>0, b-¢c>0 (2)

When the full-plastic tension of an anchor bolt is denoted by
pp, the summation of pp for the either side of anchor bolts is
denoted by Bp:

Bp= 1 pp (3)

where n : number of the either~side
anchor bolts

The full-plastic moment of the base plate is denoted by Mp.
In an attempt to indicate the state of the column base, we
define three normalized parameters, x,y, and z, as follows:

x = Mp / BpD : normalized full-plastic moment
of the base plate

y = N/ By : normalized axial force

z = M / BpD : normalized bending moment

The parameter x is positive, according to its definition.
The symmetric modelling allows us to consider only positive sign
for the parameter z. As for the parameter y, both the positive
sign for compression and the negative sign for tension are consid-
ered in this analysis.

This paper aims to describe the interaction surface of these
parameters in steel column bases on xX-y-2 three~-dimensional space.

KINEMATICAL ANALYSIS

Thirteen mechanisms are shown in Table 1, where a virtual
rotation occurs in the central rigid zone. As for the codes of
each mechanisms, also shown in Table 1, the alphabetical and the
numeral codes correspond to the tension-side shapes of mechanisms
and the compression-side ones, respectively. The codes of shapes
of the mechanisms in each side are tabulated in Table 2. Addi-
tionally, the numbers in the first column of Table 1, i (=1,2,° ",
13), are assigned to each mechanism.



By the application of the virtual work principle to the i=th
mechanism, the normalized bending moment Z is obtained as a func-
tion of x and y, f;(x,y). These functions f;(x,y), (i=1,2,--+,13),
are also tabulated in Table 1. Every f;(x,y) is a linear func-
tion of x and y, and it expresses a certain plane in the x-y-z
three-dimensional space, as shown in Fig.2.

According to the limit analysis theorem, every f;(x,y) gives
an upper bound of the normalized collapse moment for the combina-—
tion of x and y,.

STATICAL ANALYSIS

The combinations of x and y, under which an upper bound fix,
y) satisfies a statically admissible stress field, are obtained in
the following paragraphs.

Stress fields in this chapter are expressed in the following
conventions.
1) The bending stresses in the base plate are normalized by BeD.
2) The concentrated forces acting on the base plate are normalized

by Bp.

3) The distances along the base plate are normalized by D.

The sign conventions of each parameters are shown in Fig.3.
The normalized tension in the anchor bolts of either side is
denoted by B¢ or Bec, respectively. And the normalized reaction
force between the base plate and the foundation is denoted by r¢
or rc. The subscripts, t or c, are assined according to the
location in the tension side or compression side, respectively.

According to the assumption 5), the bending stresses in the
base plate can reach to full-plastic moment at the points, E,F,G,
0,P, and Q, shown in Fig.3; the normalized bending stresses at
these points are denoted by Meg s Mgz sy Mey, Myy, Mez , and megs , re-—
spectively.

The normalized distance between the location of r. and the
point G is denoted by d¢; the distance between the location of r:
and the point Q is denoted by dt.

The stress fields for each mechanism and their codes are
shown in Fig.4. These stress fields are composed of 5 tension-
side stress fields and 21 compression-side stress fields. Every
tension-side stress field satisfies the following conditions in
relation to the mechanism which has the same alphabetical code as
the subscript of the stress field code.

1) The normalized bending stresses at the points where the mecha-
nism has plastic hinges are equal to x (=My/BpD).

2) The normalized tensions in the anchor bolts which are in
plastic flow are equal to 1 (=Bp/Bp).



Similarly, every compression-side stress field satisfies the
above two conditions with the mechanism which has the same numeral
code as the subscript of the stress field code.

First, we describe the domains of (x,y) in which the either-
side stress fields are possible and statically admissible. In the
following paragraphs we use the description of the set theory, and
we express the set T, defined by all the element w which belongs
to the set V and posseses a property F, as:

T= {weV:F(uw)} (4)
Now we define the universal set U by:

U= { (x,y)€ E°: x > 0 } (5)

where E? : two-dimensional Euclidean space

The subsets of U, Tk and (Tkj, (K =A,A',B,C,D,j=1,1',2,2",3,
4) are defined by:

4Tk ={ ,yWEU :ry 20 and 0 < Bt <1 and
dt <a ~-~c¢c and -x < mt, < x, (k=1,2,3),
in the tension-side stress field +Sk} (6)

cTrj= { (x,y)€ U : r¢ >0 and 0 < B¢ <1 and
de <a+b and -x < mek < x, (k=1,2,3),
in the compression-side stress field (Sj ! (7)

The normalized stresses and distances are expressed as func-
tions of x and y in Fig.4. Therefore, we can define the sets, 1Tk
and Txj, also by a series of inequalities including x and y. We
can simplify these expressions of the sets, considering eq.(1l) and
inequalities (2), and we obtain the expressions shown in Table 3.

Now we denote the total stress field, composed of ¢Sk and
¢Skj, by +S@cSkj . The stress fields, +SADcSar +SA'@cSat , tSAP
¢Sarr , and SA"@cSA are all in equilibrium with the extermal
loads, y and fi(x,y), and we define the set W; by:

Wi = (4TaN Tay JUGTANTar ) UCLTAN ¢Tay DU CATAN Tart) (8)

where N : the intersection of sets
U : the union of sets

If (x,y) is an element of the set Wi, omne of the four stress
fields is possible and statically admissible for this combination
of x and y, and f,(x,y) gives a lower bound of the normalized
collapse moment. At the same time, it is already shown that f;
(x,y) also gives an upper bound, and we arrive at:



(x,y) € Wy — £1(x,y) : the normalized collapse moment

(9

Similarly, we can define the set W; for f;(x,y), (i=2,3,
13), as follows:

=
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x,y) € Wy — f1(x,y)
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The sets Tk and Tx; are already given in Table 3, and we
can express the sets Wi in the term of x and y, as shown in Table

4.

INTERACTION SURFACE

Several domains are formed on x-y plane by the sets W;

These domains are illustrated in Fig.5 (I) to (IV), according as

the four restrictions on a,b, and c.

lead us to:

These figures and Table 4



1) 1f U' WiUWa U - UWyg ,

(23)
U'= { (xz,y)EU: vy 2 -gx) }
where g(x) : normalized tensile force
shown in Table 5
2) (x,y) EW; and y = -g(x) — fi(x,y) =0 (24)

The normalized tensile force g(x) coincides with the tensile
strength of T-stub connection already reported by one of the
authors [10]. The tensile strength of the column base is derived
from four mechanisms, also shown in Table 5.

Now we consider a normalized axial force y<-g(x) and any
normalized bending moment z. The work done by these two loads in
the mechanism, shown in Table 5, are greater than the work dissi-
pated by the internal forces. According to the limit analysis
theorem, this involves:

3) If "= { x,y)€EU: y<-—gx)} ,
(x,y) € U" — The collapse of the column base (25)
occurs.

The union of U' and U" makes the universal set U, and we have
described the collapse of the column base for all the possible
combination of x and y.

According as the domains of (x,v), shown in Fig.5, the func-
tion fi(x,y) can be chosen to calculate the normalized collapse
moment, and the interaction surface can be illustrated on x-y-z
three-dimensional space, as shown in Fig.6 (I) to (IV).

COMPARISON WITH PAST EXPERIMENTAL RESULTS

In this chapter 22 cases of experimental works [4,5,6,7]
studied by several researchers in Japan are chosen, in which
inelastic behavior of base plates and anchor bolts are observed,
and the observed maximum strength of column bases in these exper-
iments are compared with the strength predicted by the presented
solution.

The yield strength is also an important factor in the design
of column bases, but sometimes the yielding can be hardly deter-
mined by the experimental results, because the yielding in actual
column bases occurs gradually with the extension of inelastic zone.



Therefore, the comparison is made in the term of the maximum
strength due to the fracture at the threaded portion of anchor
bolts.

Parameters in the prediction are estimated as follows:

1) The size of rigid zone beneath the nut, 2¢cD, is estimated by
the distance between two pararell sides of the nut.

2) The size of the rigid zone connected with the column, hD, is
estimated by the total length of the column depth and the half
size of both flange fillet welds outside the column.

3) Bp is calculated by:

Bp = 0.75 n 05 Ad ( 26)
where a0p ° the temsile strength of anchor bolt material
A4 : the unthreaded-body area of an anchor bolt
4) Mp is estimated by the following formula, taking into acount

the stress increment due to strain hardening in the inelastic
zones of the base plate.

Mp= B t? (yoy+ w0 ) /8 (27)

where B : the width of base plate
t : the thickness of base plate
pOy ¢ the yield stress of base plate material
: the tensile strength of base plate material

The informations about each experimental results are summa-
rized in Table 6.

Here, we denote, by k, the ratio of the predicted maximum
strength to the experimental one. The values of k are calculated
for each case and they are plotted in Fig.7, and the statistic
informations about K are tabulated in Table 7; the mean of x is
1.01 and the coefficient of variation is 137 of the mean value.

The comparison shows that the predicted values of the maximum
strength coincide with the experimental ones with sufficient
accuracy for the practical purpose.

APPLICATIONS AND MODIFICATIONS OF THE SOLUTION

1) The presented solution is derived by means of the limit
analysis, and it is required that the components of the column
bases, such as base plates and anchor bolts, are deformable to
some extent over inelastic range. If these components show
brittle failure, the solution may overestimate the actual strength.
2) The base plate is substituted by a beam in the presented
analysis. If the width of the base plate is very large in



comparison with the size of column section, the solution may over-—
estimate the actual strength, which is affected by the two-
dimensional inelastic behavior as a plate. Empirically, the
solution is applicable to the base plate width smaller than two
times of the column size.

3) The failure of concrete footing is not considered in the
analysis. It has been widely reported, when the concrete footing
is loaded over a small area on its surface, the critical stress
for the loaded area is considerably greater than the compressive
strength observed in standard cylinder tests.

This passage deals only with the modification of the solution
for an upper limit of the reaction force between the base plate
and the footing, since the actual failure of the concrete footing
is affected by various parameters.

Now we denote the normalized critical compression by rgy, which
is loaded, accompanied with no bending, over the total area of the
base plate. And also another normalized critical compression is
denoted by r%y , which is loaded over the compression-side portion
of the base plate outside the column.

When the failure of the base plate and the anchor bolts
occurs in the column base subjected to both a bending moment and
an axial force, the normalized reaction between the base plate and
the footing, r., can be substituted by the values shown in Fig.4.
The condition that the footing failure and the column base collapse
occur at the same time is expressed by:

re = rir (28)

For example, if a<b¢x, the normalized reaction force r¢ is
plotted against y, as shown in Fig.8(I). 1If r'cr is given, the
value of y that satisfies eq.(28) is determined as y'cr , and the
point G can be also determined on the y-z interaction curve, as
shown in Fig.8(II). When only an axial force is applied, the
point H is determined on y-axis by the value of rer. Taking into
account the footing failure, the z-y interaction curve is modified
by a straight line between the two points approximately.

CONCLUSIONS

Theoretical interaction surfaces of the flexural and the
axial resistances in steel column bases have been presented by
the limit analysis of the simplified mechanical model. It has
been confirmed through the comparison with past experimental
results that the solution provides an effective method for predic-
ting the ultimate strength of column bases. One of the formulas
in Table 1 is chosen to calculate the collapse moment, according



as the domains of the normalized parameters for the axial load and
the base plate strength, y and x, shown in Fig.5. This solution is
applicable to the advanced design of the steel column base.
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PROJECTIONS OF
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x-y-z INTERACTION SURFACE ON x-y PLANE
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TABLE 5 NORMALIZED TENSILE STRENGTH OF COLUMN BASES
Code 2a<b+c b+c<2a ag(x) Mechanism
g{x)
AA| s st & | el
glx)
BB| — [ecggm | fem | =
( bla-c) 2¢ s
CC s cren |24 <o N e
g{x)
[)[) bsx 2 ' -m.- T'

o: Plactic Hinge




TABLE 6

COMPARTISON WITH PAST EXPERIMENTAL RESULTS

Base Plates

Anchor Bolts

Test Dimensions Location and Size Material Property nx Material Property I Axial
No. thick- of Rigid Zomes yield tensile | diameter| yield tensile {(1)fLoad (2) 3) (4) (5)
ness width length stress strength (inch) stress strength
e | (cm) (cm) 2 s ¢ | wend | t/ead) | @m) | (e/end) | (t/end) (tm) (tm)
1 2.5 30.0 38.0 0.105 0.116 0.037 2,42 4.87 2x3/4" 2.45 3.88 R 6.0 5.9 nl M.
2 2.5 30.0 38.0 0.105 0.116 0.047 2.42 4.87 2x1" 3.97 6.34 R 13.5 12.4 Dl M.
3 2.5 30.0 38.0 0.105 0.116 0,037 2.42 4.87 2x3/4" 8.19 9.35 R 12.5 11.7 Ccl M.
4 2.5 30.0 38.0 0.105 0.116 0.047 2.42 4,87 2x1" 7.14 8.49 R 15.0 14.0 Ccl M.
5 1.2 30.0 38.0 0.105 0.116 0.037 2.79 4.70 2x3/4" 2.87 4.92 R | ) N=0t 6.0 4.4 Cl M,
6 1.9 30.0 38.0 0.105 0.116 0.037 2.95 4.83 2x3/4" 2.87 4,92 R 6.0 6.7 D1 M.
7 1.9 30.0 38.0 0.105 0.116 0.037 2,95 4,83 2x3/4" 2.87 4.92 R 6.0 6.7 DL M.
8 1.9 30.0 38.0 0.105 0.116 0.047 2.34 4.14 2x1" 2.96 4.57 R 9.6 8.5 Cl M.
9 1.9 30.0 38.0 0.105 0.116 0.047 2.34 4.14 2x1" 2.96 4.57 R | 11.0 8.5 Cl M.
10 1.29 32.0 32.0 0.141 0.111 0.047 2.96 4,48 2x20 N S 4.0 4.4 Cl T,
11 1.64 32.0 32.0 0.141 0.111 0.047 2.68 4.39 2x20 l S 5.4 5.5 Cl T.
12 2.19 32.0 32.0 0.141 0.111 0.047 2.71 4.62 2x20 9.7 t 13.9 t S N=0t 6.5 6.8 D1 .
13 2.88 32.0 32.0 0.141 0.111 0.047 3.76 5.39 2x20 (tension test S 7.4 8.4 D1
14 1.28 | 32.0 32.0 | 0.141 | 0.111 | 0.047 | 2.96 4.48 | 4x20 results of bolts) o 7.2 6.8 B1
15 2.27 32,0 32.0 0.141 0.111 0.047 2,71 4.62 4x%20 4 S| 9.0 11.0 Cc1
16 3.2 41.0 41.0 0.073 0.110 0.037 2.56 4.18 5x22 3.17 4.54 R 26,0 28.3 D1 A.
17 3.2 41.0 " 410 0.073 0.110 0.037 2.56 4.18 5x22 3.17 4.54 R ] N=40t 23.1 28.3 Dl A.
18 3.2 41.0 41.0 0.073 0.110 C.037 2.56 4.18 5x22 4,28 4.60 R 30.0 28.7 Di A.
19 3.2 41.0 41.0 0.073 0.110 0.037 2.56 4.18 5x20 4.39 4.78 R j 25.0 25.9 Dl A,
20 1.6 15.0 30.0 0.125 0.113 0.040 2.78 4,48 3x16 2.39 3.62 R| N=0t 35.3 32.4 Cl W.
21 1.6 15.0 30.0 0.125 | 0.1i3 0.040 2.78 4.48 | 3x16 2.39 3.62 | R :zizion 37.9¢ 32.4t ce .
22 1.6 15.0 30.0 0.125 0.113 0.040 2.78 4.48 3x16 2.39 3.62 R | N=1.92M/D} 5.7 6.5 C1 W.
n Number of Eather-Side Anchor Bolts (@8] Types of Anchorages R : Embeded in Concrete Footings
S : Bolted to Thick Steel Plates
(2) Maximum Strength Observed in Experiments (3 : Calculated Strength
%) Mechanism Codes in Calculation (5) Researchers M. : Masuda,K. T. : Tanaka,H.
A. : Akiyama,H. W. : Wakabayashi,M.




TABLE 7 STATISTIC INFORMATION
ABOUT K
A \/\//\ f Range 0.73 to 1.23
X Vil
" &Y Mean 1.01
Standard 0.13
Deviation
osf COfol?lE?t 13 ¥
of Variation
no axial force
no axial force compression tension
o ' . P [_’—- compression
e e e ’
M. T. A. w.

FIG. 7 RATIO OF PREDICTED STRENGTH
TO ACTUAL STRENGTH OBSERVED
IN PAST EXPERIMENTAL RESULTS

a<b<x Y a<b<x

() Relation between applied ' (Il) z-y interaction curve
axial force and
compression-side reaction

FIG. 8 MODIFICATION OF THE SOLUTION
IN CONSIDERATION OF FOOTING FAILURE
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