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ADDED MASS COEFFICIENT FOR THE DYNAMIC ANALYSIS
OF SHELL STRUCTURES SURROUNDED BY WATER
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INTRODUCTION

The motion of shell structures surrounded by water belongs to
the dynamic interaction problem between fluid and structure. In
the analysis of this problem, some analytical solutions are avail-
able for simple structures such as a vertical circular column [1]
and cylindrical shells [2], while some numerical methods are
required for shells with arbitrary configurations [3,4]. In this
paper, we formulate some variational principles, which govern the
reciprocal motion between fluid and shells, by using the Hamilton's
principle. This variational principle enables us to obtain the
approximate coupled equations of motion. In the formulation, the
following assumptions are used: a) the fluid is considered to be
inviscid, incompressible and irrotatiomal, b) the effect of sur-
face waves can be neglected in the dominant region of the response
frequency of the shell. By applying the finite element procedure
to these variational principle, added mass coefficients are numer-
ically calculated for the dynamic analysis of shell structures
surrounded by water.

VARTATIONAL PRINCIPLES

According to the above assumptions, we may express Hamilton's
principle by using the velocity potential ¢ and the displacement
vector of the shell u as follows.
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where Q=fluid region of infinite extent, Su=middle surface of the
shell, p=density of the+fluid, m=density of the shell, T=vector of
the external forces, A(u)=strain energy function of the shell and
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[ ]=time integral from tj to tj.
The subsidiary conditions are
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where S&, Sb, Sf are interfaces of the shell with fluid, base and
free surface, respectively, and C denotes the constrained boundary
of Fpe shell, as shown in Fig.l. And n is the unit normal vector
on Su and B represents the linear operator.

The stationary conditions results in the coupled equations of
motion:
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under the condition
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where D is a linear operator representing the restored force of
the shell.

After calculation with the use of Lagrange multipliers to
eliminate the subsidiary conditions of Egs.(2) to (4), we may
obtain the form:
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The stationary conditions gives us Egs.(2) to (4), (7) under the
subsidiary conditions of Eqs.(5) and (6). Because of the infinity
of the region Q, we cannot apply any numerical method to Eq.(9)
directly. Hence, we need another variational principle in order
to perform the numerical calculation such as the Rayleigh-Ritz
method and the finite element method, and two variational princi-
ples will be given in the following.

If we can find a set of the eigen functions [5] or an approx-
imate expression for ¢, which are derived from the boundary
integral procedure [6], satisfying Egs.(2), (4) and (5), we may
transform Eq.(9), through the use of Green's identity, into
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In this case, the stationary conditions are Eqs.(3) and (7) with
the subsidiary conditions of Egs.(2), (4), (5) and (6).

Let us consider the case where the region Q is divided into
two domains [7]: the finite outer domain Qg with the constant depth
H and the inner domain 9; close to the shell (Fig.l). If the
velocity potential ¢*(P) in Qp can be represented [8] by

¢(p)= f[e(P:Q) ¢, (Q)ds 1)
st

where ST is the interface between Qg and Qi, Eq.(9) can be re-
written [9] as
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with the subsidiary conditions of Eqs.(5) and (6) . Assuming that
St is a vertical cylinder of circular section, G(Q;Q') becomes

G(6,2;0,2)= Z
m=0

where An=(2n+1)7/2H, €¢=1, En(m21)=2 and a is the radius of S¢.

Moreover, Km denotes the modified Bessel function of order m of

the second kind.
The above formulation is also valid for the problem of treat-
ing groups of shells or variable depth in Qj.
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NUMERICAL. EXAMPLES

Since the variational principles have been established, we
can systematically apply the Rayleigh-Ritz method, the finite
element method, etc. for obtaining the approximate equations of
motion. Here some numerical results by the use of the isopara-
metric finite element models [10] (Fig.2) are shown for two kinds
of shells.

(1) Circular Cylindrical Shell (Fig.3)

Fig.4 shows the variation of the added mass coefficient amn
computed from Eq.(12) by using the modes qmn of free vibration of
the shell in the air, where subscripts m and n of qmn denote the
number of axial waves and circumferential waves, respectively.
The value of omn at a/R=l can be obtained from Eq.(10). Two kinds
of Gauss integration points: 3x3x3 and 2x2x2 are used to evaluate



the integrals with fluid elements. It is shown in Fig.4 that the
reduced order integration improves the results.
(2) Elliptical Cylindrical Shell (Fig.5)

Fig.6 and 7 show the relations between u and omn for geome-
trical parameters) =2.0 and 16.0, which represent the short shell
and the long one, respectively.

CONCLUSIONS

In this paper, we have derived variational principles to deal
with the dynamic interaction between general shells and fluid with
unbounded region, and we also showed some numerical examples of
added mass coefficients by means of Eqs.(10) and (12).

For the case of the motion of shells subjected to water waves
with a certain period, we can derixe the similar equations to Eqgs.
(10) and (12) by expressing ¢ and u as

s=Relinpe®®] | d=re[e"H (14)

where w denotes the angular frequency of waves.
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Fig.3 A circular cylindrical shell
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Fig.4 Added mass coefficient
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Fig.5 An elliptical cylindri-
cal shell
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Fig.6 Added mass coefficient

for vibration modes of
the elliptical cylind-
rical shell; A=2.
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Fig.7 Added mass coefficient

for vibration modes of
the elliptical cylind-
rical shell; A=16.
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Fig.8 Variation of added mass
coefficient for the
first mode in X and Y
directions.
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