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SYNOPSIS

This paper deals with the structural reliability of leg-
supported liquid containers subjected to a random earthquake-type
excitation which is a nonstationary Gaussian shot noise. The sys-
tem considered is a model for cylindrical or rectangular tanks
supported by short legs. Employing a simple dynamical model which
describes motion of the tank, stochastic analysis is carried out
for the response of the system. The reliability is evaluated from
the point of view of fatigue failure at such critical portions as
connections between the tank shell and the supporting legs or
anchored lower ends of the legs.

DYNAMICAL MODEL OF LEG-SUPPORTED LIQUID CONTAINERS

We consider a dynamical model for leg-supported liquid con-
tainers such as shown in Fig. 1.

VIBRATION CHARACTERISTICS: TFigure 2 is an experimental result
obtained by sinusoidal excitations of an experimental model with a

rectangular tank (280 x 380 x 490h), This figure shows the response
factor on the displacement of the tank. Similar result is obtained
for an experimental model with a sylindrical tank (470¢ x 485h),

As we can see from Fig. 2, the tank displacement due to sloshing

of liquid can be neglected for not so huge tanks, which, in Fig. 2,
is indicated by a small peak at 1.6 Hz, and the system behaves as

if it were a single-degree-of-freedom (SDF) system. In addition,

it is found that the system has a nonlinear damping caused by

liquid in the tank.

ANALYSIS OF HARMONIC RESPONSE: 1In order to clarify the reason why
only one eigen-frequency becomes dominant and the system behaves
like a SDF system, the analysis based on the potential theory in
fluid mechanics is carried out for the response of the system to
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sinusoidal excitation. 1In the analysis, the system is assumed to
have no damping.

In the case of rectangular tanks, the response factor on the
tank displacement is obtained as follows:
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where X, a are amplitudes of the relative displacement of the tank
and the forced sinusoidal displacement respectively; wf is the
circular frequency of the forced displacement; k is the spring
constant of the system; mo, M{ are, respectively, the mass of the
system without liquid and the mass of liquid; # is the density of
liquid; D, B are the length of a rectangular tank parallel to the
exciting direction and the other length respectively; g is the
acceleration of gravity; Qn is the eigen circular frequency of
sloshing of the n-th order given by

9n=/(2n—1) N%tanh.{ (2r—1) n%} (=1, 2, crreerem ), (2)

and where H is the depth of liquid. Likewise in the case of
sylindrical tanks, the following equation is obtained:
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where R is the radius of the tank; An (0<A;<X,<...) are roots of
J'1(r)=0; Qn is give by

.Qn:‘\/l’l-_]% tanh (1”% ("’=1\ 2, e ). (4)

Figure 3 shows the numerical result of Eq. (1) which corres-
ponds to the experimental result in Fig., 2, 1In Fig. 3, the
theoretical resonance curve has many peaks which are very narrow
except one. Comparing Fig, 3 with Fig. 2, we can understand that
these very narrow peaks are not observed in actual phenomena and
only one wide peak is physically realized. The eigen-frequency
corresponding to the wide peak is called here the "dominant eigen-—
frequency".

A SIMPLE METHOD FOR THE DOMINANT EIGEN-FREQUENCY: We now consider
the case of rectangular tanks. Eigen-frequencies of the system

are obtained as roots of the algebraic equation,
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Figure 4 shows the numerical result of each side of Eq. (5) where
the same values of parameters are used as in Fig. 3. In Fig. 4,
the eigen-frequencies are obtained from the crossing points of a
straight curve and a group of curves. Considering the meanings of
Eq. (1) and Eq. (5), we can find that the dominant eigen-frequency
is represented by the crossing point of the straight curve and
almost straight portions of the group of curves. Then this fact
leads to a simple method to calculate the dominant eigen-frequency
as shown in Fig. 5, where straight portions of the group of curves
are replaced by a straight curve derived through an approximate
method. 1In the case of sylindrical tanks, the same method is
applied for the dominant eigen-frequency. Therefore, in both
cases, the dominant eigen-frequency is calculated by
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where Sf is the area of free surface of liquid and a, B are con-
stants given by

a= 0,272, B= 0.0281 for rectangular tanks,
o= 0,236, B = 2.31 for sylindrical tanks.

NONLINEAR DYNAMICAL MODEL WITH SINGLE-DEGREE-OF-FREDOM:  Equation
(6) indicates that the equivalent mass and the equivalent spring
constant of the system are, respectively,
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To construct the dynamical model, a model for nonlinear damping of
the system is required. Assuming that the nonlinear damping is
proportional to the square of the response velocity of the tank,
then the equation of motion of the system subjected to sinusoidal
excitation is written as

maZtcorteg |xlather=maavsicoswyst (8)

where ¢, is the damping constant of the system without liquid and
cg is the coefficient of the nonlinear damping.

Using the method of equivalent linearization, Eq. (8) is
solved approximately and the resonance curve is obtained. Figure



6 shows the resonance curve of the experimental model with the
rectangular tank where the value of cg is decided through experi-
ments. The experimental data in Fig. 6 are the same in Fig. 2.
Analytical results agree well with experimental results, hence it
‘is concluded that the assumption on the nonlinear damping is
reasonable though the general expression for cg is unknown. In
the case of sylindrical tanks, the same conclusion is obtained.

PROBABILISTIC ANALYSIS OF THE RESPONSE TO A RANDOM EARTHQUAKE-TYPE
EXCITATION

EQUATION OF MOTION: 1t is assumed that the restoring force of the
system can be approximated by a linear one even though the strain
at a critical portion of the system exceeds the range of elasticity.
Therefore, using the nonlinear SDF model mentioned above, the equa-
tion of motion of the system subjected to seismic excitation can

be written as

F+ 200 +%" [#| s+ddea=—7% ,

(9)

z0)=z(0)=0

where

2¢=co//makes 2u/D=Ct/m» >

and Z is the acceleration of earthquake ground motion. As a
stochastic model of %, the following nonstationary Gaussian shot
noise is employed:

3W=4/3@n @ , (10)

where V¢ (t) is a slow varying deterministic function of time and
n(t) is a Gaussian white noise. Then,

E(Z{t)]=0, } (11)

ECZ@Z (¢+7) )=2440)30) ,

where A is a constant, 8§ is Dirac's delta function and E[ - ]
denotes an ensemble mean.

NONSTATIONARY JOINT PROBABILITY DENSITY FUNCTIONS FOR THE RESPONSE
"DISPLACEMENT AND VELOCITY: For the purpose of the analysis of
reliability, we require the one-time and the two-time joint pro-
bability density functions for the response displacement and the
response velocity.



The one-time joint probability density function (PDF) satis-
fies the Fokker-Plank equation,
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As an approximate solution of Eq. (12), we can assume the follow-
ing Gaussian distribution because the nonlinearity of the system
is weak:

(o o t)= 1 .z [__"iz(t)x’—Z’C.z;_-(i)xi'l-oz’(t)j:’]
o 224/ o K H @ TP LT 2 {0 (Box? (0—F 2z ()
= 1 i, ) (13)
=5alaes@) =32 5 =) ,
where
0;2(0)= Ezs(0)= 052(0)= 0,
x% (€N -i)r .
’ (14)

SW=Elzz’ )= [

K3(8)  0*(0)

oxXt)  Kazale) ]

Equation (13) contains three unknown functions, i.e., Oxz(t),
kxx(t) and ng(t), which are determined by solving the system of
differential equations,
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Equations(15) are obtained by employing the method of weighted
residuals (the method of moment).(lg

Likewise, the two-time joint PDF is also approximated by the
Gaussian distribution,

1
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The matrices S(t;), S(t2) are given by Eqs. (14), (15), hence the
matrix R(ty, tp) is required to determine the approximate two-time
joint PDF. Here we introduce the linearized equation of Eq. (9),

z+ 20 (oe &+dax=—2 , (18)

where E; is the statistically equivalent critical damping ratio
given by
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and, as shown by Eq. (19), becomes a function of time because of
nonstationariness. Let & (tp, tj) (to2ty) be the transition
matrix with respect to the state vector x = (x, %)T of Eq. (18).
Using the transition matrix, then R(t;, tp) is written as

S @) O (s t) for t, 2 tj,
Bt ta) = ) 5@ (20
(g 2 t2
Ot § for t; 2 to,

where ¢(to, t1) is approximated by
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and where £(t) is defined by
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NONSTATTONARY PROBABILITY DENSITY FUNCTIONS FOR THE ENVELOPE OF
THE RESPONSE DISPLACEMENT: Since the response displacement of the
system is a typical narrow-band random process, it can be approxi-
mately represented by

z()=X () sinfost—0()} (X20, 0=0<27) , (23)

where X(t) is the envelope process of x(t) according to Rice's
definition(2), Both of X(t), 0(t) are slow varying functions of
time, hence the response velocity can also be represented by

=X wacos{wst-6(t)} (Xz0, 0=56<27), (24)

Using Eqs. (23), (24), and considering that o.2(t), okz(t) are
slow varying functions of time, the following relations are ob-
tained:
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By virtue of these relations, Eqs (13), (16) become simpler expre-
ssions. !

The one~time PDF for the envelope can be obtained from the
one-time joint PDF of x, x given by Eq. (13). Using the technique
of transformation of random variables, i.e., transformation from
(x, x), to (X, 6), we can obtaine the one-time joint PDF of X, 6.
Then, integrating the joint PDF over the 6 domain, we have the
one-time PDF for the envelope,

X
p X\ ) =;:f—(g exp {-m} xz0) | (26)

Analogous to Eq. (26), the two-time PDF for the envelope can
be obtained from the two-time joint PDF of x, X given by Eq. (16),
through the transformation of variables from (x;, X1; X3, %Xp) to
(X1, 6135 X2, 62):
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where I, is the modified Bessel function of the zero-th order and
n(ty, to) is defined by
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ANALYSIS OF THE STRUCTURAL RELIABILITY

NONSTATIONARY PROBABILITY DENSITY FUNCTION FOR THE CUMULATIVE
DAMAGE OF FATIGUE: The algebraic relation between the tank dis-
placement x and the strain € at a critical portion of the system
is assumed to be linear as follows, even though the strain exceeds
the range of elasticity:

e = hx

. (29)

Therefore, the virtue of Eq. (23), the amplitude of the strain due
to the response of the system can be written as

2 @O=hX0 . (30)

For the expression of the relation between the strain ampli-
tude, £, and the number of cycles to fatigue failure, Nf, the fol-
lowing formula which is proposed by S.S. Manson(3) for the low
cycle fatigue failure is used here:

T =c,N b, (31)

where Co, by are the material constants.

The cumulative damage based on the Palmgren-Miner theory is
considered. According to the theory, the damage accumulated dur-
ing the period of [0, t] due to the response of the system, D(t),
is represented by

pO=Kats.fixP@ar | (32)
where
b=1/b,5 K= (1/¢)0
and where D(t) is approximated by the continuous quantity.
By virtue of Eq. (32), we obtain an expression for the expec-
tation of D(t),
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The expectation E[Xb(T)] in Eq. (33) can be calculated by employ-
ing p(X, t) in Eq. (26). Then,
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Likewise, by virtue of Eq. (32), we obtain an expression for
the variance of D(t),
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It is found that the computation of the variance requires the
correlation function E[Xb(tl)Xb(tz)], which can be calculated by
employing p(X;, t;; X5, tp) in Eq. (27). Through complicated cal-
culation, the following result is obtained:
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Though the expectation and the variance of D(t) have been
obtained in the theoretical manner as mentioned above, it is dif-
ficult to obtain the theoretical distribution of D(t). Then the
distribution is assumed to be the log-normal distribution,
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STRUCTURAL RELIABILITY: Let DM denote the maximum damage accumu-
lated in the material used for the critical portion of the system
until fatigue failure. If the Palmgren-Miner theory can be applied
in the strict sense, the value of DM should be the unity. However,
it has been shown by experiments that the value of Dy fluctuates.
Then we assume that Dy is a random variable and it has the log-
normal distribution as well as D(t), i.e.,

P(D")=m exp {—%‘ﬂ} (Duz0) , (39)

The structural reliability from the point of view of fatigue
failure is defined as the probability,
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Since D(t) monotonously increases with time, Eq. (40) can be
rewritten as

R(&)=Pros(D(@®<Dx] , (41)
On the other hand, the structural unreliability is defined by

F@®)=1- R{)=Pros(D(t)zDs) , (42)
which indicates the cumulative failure rate during [o, t]. On the

assumption that D(t) and Dy are statistically independent of each
other, F(t) is given by
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Furthermore the failure rate per unit time is given by
(44)

fm=£rm=-ﬁxm‘

EXPERIMENTAL AND NUMERICAL RESULTS

Experiments are carried out to examine the analytical results
and to obtain the fundamental data, including random excitations
of the experimental model with the rectangular tank mentioned be-
fore and a fatigue test of supporting legs of the model by sinus-
oidal excitations.

Figure 7 shows the relation between the tank displacement and
the strain at anchored lower ends of the legs in the experimental
model. We see that the assumed relation in Eq. (29) is satisfied
in this case. Figure 8 shows the observed relation between the
strain amplitude at the portions and the number of cycles to the
fatigue failure of any one out of four legs of the model subjected
to a sinusoidal excitation, from which the material constants in
Eq. (31) are obtained for this case.

Figure 9 is a sample of the responces to the random excita-
tions by 264 waves generated from the same population, where the
following function is used as V¢ (t)
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In Figs. 10013, analytical and experimental results for the random
responses of the system are shown, and the agreement is satisfac-
tory in Figs. 10, 11, 12, 1In Fig. 13, the analytical results on
the distribution of the cumulative damage due to the response are
shown by solid lines. The distribution shown by broken lines is
the log-normal distribution having the mean and the variance
derived from the experimental data, which agrees well with the
distribution by the experiment. This fact means that the assump-—
tion on the distribution is reasonable. Therefore, in order to
achieve the better agreement between the analytical and the experi-
mental results, the more precise analysis is required for the
expectation and, in particular, the variance of the cumulative
damage due to the response.

Figure 14 is a numerical example of the structural reliabil-
ity after 30 seconds from the beginning of excitation versus the
maximum (absolute) response acceleration of the system or the
maximum power spectrum density (PSD) of the excitation, where the
value used for h is about three times as large as the value obtain-
ed by the experiment shown in Fig. 7. We can see that the struc-
tural reliability rapidly decreases as the maximum acceleration or
the maximum PSD increases in the range beyond a certain level.
Figure 15 shows the structural reliability, unreliability and the
failure rate per unit time varying with time. We found that the
religbility is almost determined after 10 seconds in the case
where v¢(t) given by Eq. (45) is used.
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