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SYNOPSIS

In this paper, the Beck's problem which is a classical problem
of the elastic nonconservative system is analyzed from the view-
point of the geometrically nonlinear problem. The reduced basic
nonlinear equation of motion is derived by applying the modal
analysis technique to the basic equation obtained by the finite
element method of the beam element. The results of the direct
integration show the existance of the parametric excitative phenom-
enon under the load level which is much lower than the classical
fluttering load level, which gradually grow up to the final sta-
tionary oscillation with the large amplitude. Paying attention to
the final oscillation, the stationary oscillative analysis is
performed by the harmonic balance method. Consequently, the
existance of the stationary oscillative solution is proved even in
the load level which is much lower than the classical fluttering
load level.

INTRODUCTION

Most of the structural analysis of the elastic system which
belong to either static problem or dynamic problem has been as-
sumed to be subject to some conservative load. However, some
problem of the elastic system belongs to the nonconservative one,
for example pipes conveying fluids, nozzles spauting a rappid flow,
aerofoils under high speed flight, towers under wind loads, etc.,
and still more, in the strict sense, most of the elastic problem
may be reduced to nonconservative one. Dealing with the problem
of this kind, we cannot use the energy principle or, that is to say,
any variational methods based on the energy principle, and the
basic differential equations derived from any virtual work prin-
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ciples lead to the non-selfadjoint differential equations. However,
we have some tools, though they are approximatioms, to solve the
problem of this type, for example the weighted residual method, the
finite difference method or the adjoint variational method which is
an application of the adjoint differential system,

Modeling the problem to be analyzed, there is a typical and
classical problem what is called Beck's problem. It is a problem
of the beam having one clamped end and the other free end which is
subject to the tangential concentrated load, as shown in Fig.1l.

It has been treated by many researchers as M,Beck and, H.Leipholz,
V.V.Bolotin, H.Ziegler et al, and it is clarified that some pecul-
iar facts exist as represented by the destabilizing phenomena.
Actually the results of researches of this field have been already
used in many branches of the mechanical engineering.

However, all of the preceding researches are based on the
method of discerimination for the structural stability in which the
basic equations are reduced to the complex eigenvalue problem
connected with the frequency parameter, assuming the deflection of
interest to be the exponential function of the time, That is to
say, the system is stable if the amplitude of the deflections of
the system continues to maitain some suppressed magnitude as the
time parameter increases and unstable if it increases conversely.
In the latter case, it is called as the flutter instability
phenomenon.

Recently, the authors obtained, however, the eccentric results
for the preceding Beck's problem. Namely, there exist two note-
worthy phenomena, that is, first, the system with the geometrical
nonlinearity become unstable in the load level which is much lower
than the classical flutter instability point and second, the
unstable oscillations gradually grow up to the final stationary
oscillation with the large amplitude such as the van der Pole's
limit cycle. These results are obtained by the direct integra-
tion method applying to the 4 degrees—of-freedom reduced system
that is derived from 10 beam finite elements approximation.
Introducting the load parameter A which is based on the Fuler's
buckling load level re(=7n’EJ/41%®) , the classical flutter load
level corresponds to ?=8.19, The authors found that the preced-
ing excitative phenomenon exists at the load level 1=8.,0 and
still more it exists even at the load leyel »=5.,0, and at each
load level, the excitation ceases to the final stationary
oscillation with the large amplitude. It has not only no meaning
but no persuation, however possible it is, to continue to perform
the simulation in order to check the existance of the excitative
phenomenon at the lower load level and apart from the matter, it
needs a great effort to perform the computation, Paying atten-—
tion to the fact that the basic reduced equations of motion contain
the stationary solution obtained by the direct integration, the



authors adopt the way to pursue the final stationary solution
directly. The adopted method for this analysis 1s the harmonic
balance method whose effective and systematic computational program
has been already prepared.

Consequently, the authors obtain the result that the stationary
solution exists in the region of the load leyel »z2 which is much
less than the classical flutter load level, and there exists the
so-called bifurcation phenomenon between the obtained stationary
splutions,

CONSTRUCTION OF THE REDUCED BASIC EQUATIONS OF MOTION

Applying the finite element method to the Beck's rod, we adopt
the beam element and devide the rod into 10 elements as shown in
Fig.l. The strain-displacement relations are as follows,

e=du/ds+1/2{ (du/ds) ?+(dw/ds) ?}
k=d2w/ds?+(du/ds) (d%w/ds?) - (d2u/ds?) (dw/ds) N

where € and « represent the axial strain and the curvature,
respectively. 1In this representation no omission is contained
without the assumption of e<<1 ,

After the usual derivation of the finite element process, we
obtain the basic equation of motion as the following equations.

(Mg 5] {d43+ (K551 {d 33+ 1R 53] {5 HA )+ K gp) 1 {31 HE }={R3)  (2)

where i,3,k,1=1nN , N: Total freedom of the system

In order to enable us to grasp the essence of this problem and to
treat simply, the modal analysis technique is applied to Eq,(2).,
Constituting the modal matrix, we introduce the linear eigenvalue
problem as follows,

(Mj41{d5)+(K;551{d;}={0} i, 3=1N 3)
After solving Eq.(3), we select four modal vectors in which two of
them correspond to the first and the second natural oscillations

of the axial direction and the others of the lateral directions,
Then the modal matrix is represented as follows,

"[Eij] N: Total freedom of the system 4)

Using it, we obtain the reduced nonlinear equation of motion as
the following equation.

(1 rwdafxg 1+ K 53] (e PO} + KT gx1 ] (x5 e} x1 3= (P} )

where x1,x2 ; the generalized coodinate of the axial direction
x3,x4  the generalized coodinate of the lateral direction



{dr}=[d’rj]{Xj}

[K;.jk]=[Krst] (0,3 [0g5] [O4x]

(K] jx11=[Krgeul [0r3] (95451 [94k] [2y1]
{(P1}={Pr} [yl r,s,t,u=l-N;i,j,k,1=1~4

The follower force vector acting the free end of the bar is
estimated as follows,

T
{P;}=l0,...,0,0,~ANcosfp,-Asinbp,0 (6)

where 6n=tan’dy
On the other hand, there is a relation between the generalized
coordinates xi and the displacement dy as follows,

de?FNij (7

From Eq.(6), we obtain the generalized force vector as follows,
{p;}=—A{¢N_2,icosen+¢N_l’isin9n} 8)
Substituting Eq,(7) into Eq.(8), the generalized force vector is
represented approximately by the generalized coodinates only as
follows, _ '

* 4 . 4
(Pi}=-2{dy.> ,icos (j)_::ijxj ) +oy.1,38in (j?ld)ijj) } (9)

Regarding the relation sine=e-¢?/3140(e®)  andcose=1-e2/21+0(e"*) and
omitting the higher order, we obtain the generalized force vector's
representation as the following equation.

*

{PY)=A ({F] )= 1B} 41 {x53- 1B 530 Oy MOy =[BT 550 1 (x5} I} g 1) (10)
where

{F;}=—{®N_2 ,i}

(E]41={0Nn-1, i} {onj}

[E;jk]=_ (1/2) {¢N—2,i}{¢Nj}{¢Nk}

[E]jk11=-(1/6) {on-1, i} {onj} {onk}{oN1} i,j,k,1=1-4

Substituting Eq.(10) into Eq.(5), we obtain the nonlinear equation
of motion as follows,



(*i)+(tm23+k[E§j])(Xj}+([K§jk]+X[Egjk])£Xj}{xk}
+(~[x;jkl]+x[E{jk1]){xj}{xk}{x1}=lfFi} i,j,k,1=1-4 (11)

W o
wz
fw2l= G
3 2
where o Wy

This is the reduced nonlinear. equation of motion for the Beck's
problem.

THE DIRECT INTEGRATION

The results of the direct integration by the Runge-Kutta
method are depicted in Fig.2. Adopted stfor this simulation is
automatically controlled in order to suppress the error due to the
high frequency oscillations. Fig.2-a and Fig.2-b show the results
for the case in which k3=1x107 ,%4=0 and %3=0,%4=1x10° are given
to the system as the initial value, respectively and again, 2
expresses the load parameter based on the Euler's buckling load.
These results show that there is a phenomenon of the increasing
of an amplitude at the load level 1 =7.0,6,0 and 5.0 which are much
lower than the critical flutter load level and that this phenomenon
does not depend on the initial values. Fig,3, Fig.4 and Fig.5 also
show the results of the direct integration. Differing from Fig.3,
these are the results of the direct integration for the long time
length, From these figures, we can see the existance of the
gradually converged final stationary oscillations with the large
amplitude at the each load level, which are less than the classical
flutter load level.

The results of the direct ingegration show that there is some
divergence phenomenon surely caused by the coupling between the
nonlinear terms, but there is no further data to explain the
mechanism of this phenomenon. Subsequently, we try to clarify this
fact by investigating the 2 degrees-of-freedom reduced system as
the following section.

INVESTIGATION OF THE 2 DEGREES-OF-FREEDOM REDUCED SYSTEM

As has been stated in the preceding section, we investigate
the 2 degrees-of-freedom system. In Eq.(ll), estimating the
generalized displacements of the axial direction x and x, as
static and linear, we obtain the 2 degrees-of-freedom nonlinear
equation of motion expressed only by the lateral generalized dis-
placements x3 and x4 as the following equations.

{§i}+(fw2]+X[E§j]+2A[§ij]){Xj}+[K§jk1]{Xj}{Xk}(X1}={0} i,3=3,4 (12)

where .. *
[Kij]=[xija]{xa] a=1,2
{xa} ; the axial displacements estimated staticaly and linearly
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In this representation, the quadratic nonlinear terms are not
contained because of properties of the coupling between the
lateral displacements of the system without the geometrical cur-
vature., Cutting off the cubic nonlinear terms of Eq.(12), we also
prepare the linearized system as the following equations.

{§i}+(rw’J+A[E;j]+2k[ﬁij]){xj}={0} i,3=3,4 (13)
The results of the direct integration of Eq.(1l3) and Eq.(12) are
depicted in Fig.6 and Fig.7, respectively, Fig.6 shows that there
is the flutter phenomenon only in the region of Az 8.2 correspond-
ing to the classical theory and that the almost periodic oscilla-
tion occurs in the region of i< 8.2. On the contrary, we obtain

no boundlessly fluttering oscillation from Eq.(12) as shown in

Fig.7 and there are only the almost periodic oscillations. As

there are great differencies between the results of Eq.(11l) and

the results of Eq.(12) or Eq.(13), we reach the conclusion that

the fundamental cause of the preceding fluttering is the existance
of the oscillations of the axial direction, Consequently, we

obtain the physically reasonable conclusion of the fluttering
phenomenon which corresponds to the parametric excitative phenomenon.

THE STATIONARY OSCILLATIVE ANALYSIS

As has been stated, the nonlinear equation of motion (11)
contains the stationary oscillative solution as shown in the
results of the direct integration. Accordingly, it is rather
natural to pursue the stationary solution directly for the aim of
discrimination of the critical load of the system. So large as
the amplitude of the stationary oscillation obtained by the direct
integration is, only a few methods can be applied to the present
problem for the stationary oscillative analysis. One of the nu-
merical methods which can satisfy the requirement of the accuracy
may be the harmonic balance method which can express the solution
strictly in the space of the assumed functions by solving the
nonlinear algebraic simultaneous equation numerically. As there
is, however, no solution for the first approximation to be con-
verged to the correct solution, we perform the frequency analysis
for the final asymptotic oscillations of the results of the direct
integration. The results of this analysis are shown by a histogram
in Fig.8, where the wave of the generalized displacement x3 is
taken as a basic harmonic. Whereas, for example, the predominant
harmonics for the load level = prove to be coswt , sinet for

x3 and coswt, cos3wt, cosSwt , cos7wt , sinwt , sin3wt, sinSwt,sin7wt
for x4 . From these figures, we can see that the weight of the



higher frequency becomes larger as the load parameter decreases.
Consequently, it may be sufficient to take the assumed
harmonics for the stationary oscillative analysis shown as follows,

xl=clo+0120052wt

Xp=cpp+Co 2COSZ(1)t

X3=Czjcoswt+syisinut _ (14)
X4=Cyjcoswt+cyycos3uttcy 5cosSmt+54lsinmt+s43sin3wt+54ssin5wt

where  ©10:C12,€20,€22,/C31,531,41,C43,C45,541,543,545 are the unknown
variables to be calculated by the harmonic balance analysis and the
successive analysis of the nonlinear algebraic simultaneous equa-
tions. Applying the assumed harmonics to the basic nonlinear
equation of motion (11), we obtain the nonlinear algebraic simul-
taneous equation as follows,

(A5 31 {ey I+ 4] {egHeg 4 A 11 {eg o e  1={E5} 4,3,k 1=1-12 (15)

where (Ci}5LC10/C12:0201¢22/031/531/C414C43/C45541+543+545)

Adopting the results of the preceding frequency analysis as first
approximate solutions and applying the arc-length method for Eq.
(15), we readily obtain the converged solutions. The results of
this analysis are graphically depicted in Fig.9, and the change

of the unknown variables is depicted in Fig,l0-1-Fig.10-3.

And the maximum amplitudes of the generalized displacements xj

and x, are depicted in Fig.ll, The i-w curve is shown in Fig.l12.
In these figures, there seems to be a singular point near the load
level r=4.1. Actually, solving the nonlinear algebraic simul-
taneous equation (15) from the higher load level to the lower one,
one cannot obtain the equilibrium path continuously., If one
continue to perform the preceding process, however possible it is,
the results obtained in the region of rx< 4,1 prove to be a meaning-
less solution from the viewpoint of the practical questions,
because these results become clear to be the unstable solutions
from the stability analysis. Consequently, it is necessary to
perform to calculate by the bifurcation technique to obtain the
further equilibrium path.

This bifurcation phenomenon is supported by the results of
the preceding direct integration, The result of the direct
integration for the -load level i= 8.0 is depicted in Fig.l1l3.

From this figure, one can see that the oscillations of the gener-
alized displacements x3 and x4 grow up together without the phase
difference to some extent and that in the bifurcation range in the



diagram where the amplitudes of them grow up to some magnitude,

the descrepancy of the phase suddenly occurs, which may be a
trigger of the increase of the amplitudes of x; and x4, . This
qualitative explanation can be made for any cases of the load level
as shown in Fig.l4 and is also supported by the results of the
harmonic balance analysis. Namely, there is an unstable solution
on the extention of the equilibrium path of the load level 2<i<4

in the extent of the load level x> 4, which is depicted in Fig.ll

as a broken line. The initially disturbed system firstly increases
its amplitude gradualy up to the level described by a broken line,
where the system pauses to increase its amplitude for a while and
secondly, after the bifurcation phenomenon, the system starts to
grow up to the final stationary oscillation of the large amplitude,

CONCLUDING REMARK

It is proved that the stationary oscillative solution of the
Beck's problem with the nonlinearity exists in the comprehensive
range of the load level even in the load level which is much lower
than the critical flutter load level of the classical theory.

This results is supported not only by the simple direct integration
but also by the stationary oscillative analysis in which two results
completely coincide together. Furthermore, the stationary oscil~
lative solution with the large amplitude exists even in the load
level =2 . These results imply that the critical load level of
the Beck's problem exist at least in the load level lower than

»=2 from the viewpoint of the nonlinear oscillative analysis,
which is more actual treatment than the linear eigenvalue analysis.
What is more important, it can be expected especially from the
result of the stationary oscillative analysis that the critical
load level of the Beck's problem approaches the Euler's buckling
load level gradually, though the converged solutions are not
obtained in the lower region than i=2 , probably because of the
lack of the assumed harmonics.
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