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COMPARISON OF FIVE APPROXIMATE METHODS
OF THE NONLINEAR EQUATION OF MOTION

by

Hiroshi GOTOI) and Yasuhiko HANGAIII)

SYNOPSIS

For the analysis of the nonlinear equation of motion, we have
many analytical methods and are often puzzled to select the most
suitable method for the problem to be analyzed. 1In this paper, in
order to examine the properties of several approximate methods, we
present the results of the first and second order approximations of
each method for the one-degree-of-freedom system, which contains both
the quadratic and cubic terms. Then we clarify the differences
between each approximate method by comparing the backbone curves of
the first characteristic mode of a sinusoidal arch.

INTRODUCTION

Shallow structures like arches and spherical shells under static
loadings have the load~deflection curves as shown in Fig. 1. Govern-
ing equations of these curves contain quadratic terms, together with
cubic ones. These quadratic terms make the nonlinear behavior un-
symmetrical and cause the snap-through and direct snapping phenomena
in the static and dynamic buckling problems, respectively. The first
step for treating the stability of shallow structures is to examine
the nonlinear characteristiec like the backbone curve of the nonlinear
equations of motion with quadratic and cubic terms.

We have many analytical methods and are often puzzled to select
the suitable method for the problem to be analyzed. On the other
hand, a rapid development of the finite element method in the
nonlinear field has enabled us to solve large scale algebraic
simultaneous nonlinear equations.

Under these circumstances, it is the purpose of the present
paper to compare five kinds of analytical methods by numerically
congstructing backbone curves for the one-degree-of-freedom system.
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COMPILATION OF FIRST AND SECOND ORDER APPROXIMATIONS
Let us set a typical equation of one-degree-of-freedom as
¥4+ ax + bx2 + ¢cx3 =0 ¢D)

When b=0, the equation (1) is called as Duffing's type. Since the
coefficient b plays an important role, as aforesaid, in shell-like
structures, let us examine the influence of b by comparing with the
case it vanishes. '

In this section, the results of both the first and second order
approximations obtained by each method are compiled, without the
procedure of derivation. In the following, xy and xj1 represent
the first and second order approximation, respectively,

[1] Averaging method

X7 = AcOswit

wp = (1 + 3cAZ/8a)w,

x11 = Acoswrit + b{A2/4wy2 + A2/12w02-(4cosw11t -
7cos2witt) + cA3/32wy2- (cos3wyit - cosWrrt)

wrt = (1 + 3cA2/8a)w,

[2] Bogoliuboff-Mitropolsky's asymptotic method

Acosd + b(-A2/2a + A2/6a-cos2¢) + cA3/32a.cos3¢

XI =

¢ =owrt = (1 + 3cAZ/8a)uw,t

x71 = Acosd + (-bA2/2a + SbcA%/8a2) + (bA2/6a - 31bcA*/
96a2) cos2d + (cA3/32a - 21c2A5/1024 + b2A3/48a2)
cos3d + bca%/96a2.cosbd + c2A5/1024a2.cos5¢ -

¢ = w7t = (1 + 3cA2/8a - 5b2A2/12a2 - 15c2A%/256a2)wot

[3] Perturbation method (1) ;
(expansion in the neighborhood of )

Acosd - bA%2/2a + (b/3a - cA/32a)A2cos¢\+ bAZ/6a-

XI =
cos2¢ + cA3/32a-cos3¢
¢ = (1 + 3cAZ/8a)wot
xg7 = x7 + (-b2A3/3a2 + 21bca%/32a2) + (87b2A3/432a2 -

35bcA%/96a2 + 23c2A5/1024a2)cosd + (b2A3/9a2 -



beA4/3a2)cos2¢ + (-3c2A5/128a2 + b2A3/48a2 +
bea4/32a2)cos3¢ + beAl4/96a2.coshd + c2A5/1024a2-
cos5¢

& = (1 + 3cA2/8a - 5b242/12a2 + bea3/4a? - 21c2A%/256a2)

[4] Perturbation method (2)
(expansion in the neighborhood of w)

x7 = Acos¢ - bA2/2a + (bA2/3a - cA3/32a)cosd + bAaZ/6a-
cos2¢ + cA3/32a-cos3¢

¢ = (1 + 3cAZ/8a)wyt

x17 = x1 + (-b2A3/3a2 + 9bcA%/8a2) + (29b2a3/144a2 -
23bcA%/24a2 + 11¢2A5/1024a2)cosd + (b2A3/9a2 -
5beAl/24a2)cos2dp + (-3c2A5/256a2 + b2A3/48a2 +
bcA%/32a2)cos3d + bea%/96a2.coshd + c2A2/1024a2.
cos5¢

& = (1 + 3cA2/8a - 5b2A2/12a2 + bcA3/4a2 -~ 21c2A%/256a2)
wot

[5] Perturbation method (3)
(expansion in the neighborhood of woz)

x7 = Acos¢ - bA2/2a + (bA2/3a - cA3/32a)cos¢ +
bA2/6a-cos2d + cA3/32a-cos3¢

2

Wy 1+ 3cA2/4a)w02

xp + (-bA3/3a2 + 21bcA%/32a2) + (29b243/144a2 -
LbcA4/3a2 + 117c2A5/1024a2 - b2A%4/9216a2 + 2bcAd/
98304a2 - ¢2A6/10242a%)cosd + (b2a3/9a2 - bceA4/3a2)
cos2¢ + (-117¢2A5/1024a2 + b2A3/48a2 + beak/a?)
cos3d + bea4/96aZ.coshd + (b2A%4/9216a2 - beak/
49152a2 + c2A6/10242a%) cos5¢

X11

wpp2= (1 + 3cA2/4a + bcA3/a2 - 5b2A2/6a2 - 9c2A%4/128a2)
2
Wo

[6] Perturbation method (4)
(expansion in the neighborhood of w2)

x] = Acos¢ - bA2/2a + (bA2/3a - cA3/32a) cosd +
bA2/6.cos2¢ + cA3/32a-cos3¢



(1):[2

X11

WIT

I

2=

(1 + 3cA2/4a)wy2

x; + (-b2a3/3aZ + 9bcA%/32a2) + (29b2A3/144a2 -
11bcA%4/96a2 - c2A5/1024a2)cosd + (b2A3/9a2 -
5bcA%/24a2) cos2d + (b2A3/48a2 + beA%/32a2) cos3d
+ beA%/96a2.costd + c2AD/1024a2.cos5¢

(1 + 3cA2/4a - 5b2A2/6a2 + 3c2A%/128a2)wy2

[7] Duffing's_iteration method

,Xi

where

wIZ

Acosd — bA2/2a + bA2/6a-cos2¢ + cA3/32a:.cos3d
(1 + 3cA2/4a)w02

9
Acosd + 1/a2.THi/(1-1i2) -cosid

i=0
(1x1)

= (1 + 3cA2/4a - 5b2A2/6a2 + 35b2cA%/64a3 +

3c2A%4/128a2 + 3c3A6/2048a3 - 11b2c2A6/1536a%)w,2

(w2 - a)ey, - bEg - cFyp,

(w2 - a)ey - bEy - cFp,

(wz - a)e3 - bE3 - cF3,

-bE4 - cFy, H5 = -bE5 - cFg,

-bEg - cFg, Hy -cFy7, Hg = —-cFg,
-cFg,

([

€0l + e12/2 + ex2/2 + eq2/2,
e12/2 + 2egey + eles,

2egeg + ejep, Ey4 = e22/2 + eyes,
ege3, Eg = e32/2

eo3 + 3ege12/2 + 3eper2/2 + 3ege3?/2 +

3e12ep/4 + 3ejeges/2

= 3ep3/4 + 3ege12/2 + 3ey2ep + 3egejeg +
3e12e2/2 + 3ejese3/2 + Jenes2/2

= 3e33/4 + 3e02e3 + 3egejey + e13/4 +

Je12e3/2 + 3eyen2/4 + 3e§2é3/2

3eqep2/2 + 3egeles + 3ei4en/4 + 3ejeges/2 +

3eges2/4

3egjegeq + 3e1e22/4 + 3e12e3/2

3e0e32/2 + 3e1e2e3/2 + 623/4

3e1e32/4 + 3epZes/4

3e2e32/4, Fg = e33/4

I

-bA%/2a, e1 = A, e, = bA2/6a, e3 = cA3/32a



[8] Harmonic balance method
Assuming the displacement X; as follows,
x = Co + Cjpcoswt ' (2)
we obtain the simultaneous nonlinear algebraie equations:

aCo + b(Co2 + C12/2) + C(Cy3 + 3C,C12/2) =0 (3)
(a - w2)Cy + 2CoC1+b + C(3Co2Cy + 3C13/4) = 0

Solving Eq. (3) numerically, we obtain the first order approxi-
mation.

NUMERICAL RESEARCH

The purpose of this section is to examine the characteristics
of five analytical methods of the nonlinear equation of motion,
comparing the numerical results for the backbone curves.

As an illustrative model for the nonlinear equation of motion,
we adopt a shallow sinusoidal arch supported hinges (Fig. 1).
Restricting the deformation to the first characteristic mode with
no damping, we get the equation of motion with both the quadratic
and cubic terms:

%+ (1 + H2/2)x - 3H/4-x2 + 1/4.x3 =0 (4)

where H is the shape parameter (H = h/JI/A).
Introducing the nondimensional parameters, T and &, as

T =1+ H2/2.¢, x =2 |1+ H2/2.E (5)
we obtain the nondimensionalized equation of motion:
E+E+e2+83 =0 A (6)

in which € = -3H/2 /1 + H2/2
In the numerical calculation, we adopt two cases of H=3 and H=8,
which correspond to the relatively shallow and deep arch, respec-
tively, from the view point of the static buckling problem.

In order to compare the numerical results from each method,
it is necessary to conform the correct solution. However, as it is
impossible to derive the rigorous solution of Eq. (3), the results
by the harmonic balance method of 10 waves approximation will be
used for the comparative study (see Fig. 3). In the numerical
calculation by using the harmonic balance method for Eq. (6), it is
found that the Fourier series converges very rapidly and sufficient
accuracy is obtained by taking only up to the second term.



Fig. 4 through 10 show the results by the asymptotic method, pertur-
bation methods of four types, Duffing's iteration method and
harmonic balance method of two waves approximation, respectively.
The result by the averaging method is not shown because of its
unusual error. From these figures, the following comments will be
given., '

Every method possesses a relatively good precision in the
neighborhood of the linear oscillation, that is 0.95 L w £ 1.0.
The equation of motion Eq. (6) with quadratic terms has both the
softening and hardening properties. The present results show that
the numerical methods which can reflect the above combined properties
are only the Duffing's method and the harmonic balance method. And
for the case with a large quadratic terms of H=8, only the harmonic
balance method catches the nonlinear characteristics of the very
large amplitude oscillation., We show the results of the case £=0
in Eq. (6), in Fig. 11 through Fig. 18 for purposes of reference.

In a concluding remark, the numerical results explain that when
we apply the perturbation method, asymptotic method, etc. to the
- nonlinear equation of motion with both the quadratic and cubic
terms, it is necessary to introduce a technique which can express
the shift between the hardening and softening properties.
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q: load parameter

d

Fig., 1: Typical Load-Deflection Curve

q: load parameter

Fig. 2: Shallow Arch
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