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Introduction

Energy criteria have been often used for the establishment of
the lower bound on the dynamic buckling load under step or impulse
loading.[lsZ] Along these lines, this paper presents an energy
criterion for the dynamic buckling problems under the rectangular
loading, based on the observation of the total potential energy
surfaces for various load levels. 1Its energy criterion enables us
to make a relation between the critical load level and time dura-
tion of the rectangular loading. 1In the theoretical formulation,an
inequality of Liapunov's function is adopted to estimate the upper
bound of the total energy, i.e. the sum of the potential and
the kinetic energy, along the time history. The calculated results
for the shallow shells under the rectangular loading will be
presented.

Concepts of Energy Criteria

In order to clarify the concepts of the energy criteria, let
us consider a nonlinear one-degree-of-freedom system under step or
rectangular loading.

(a) Energy criterion to the step 1oading[1]

Fig. 1 shows a typical load-deflection curve and a family of
the total potential energy curves for various load levels. Suppose
a ball dropped from the origin of these curves, it is easy to
understand that the deflection will be limited to a region in the
vicinity of the origion as long as q < q,. But, if q is increased
above qp, the ball will move away from the origin. Therefore, a,
is defined as the dynamic buckling load for the step loading.

(b) Energy criterion to the rectangular loading

For t < 0, a ball is supposed to be staying at the initial
equilibrium point A on the total potential energy curve of q = 0
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as shown in Fig. 2. As soon as the load is applied, the ball
starts to roll down on the total potential curve of q = q,. At
t =tyg, the ball, which possesses the kinetic energy obtained in
the interval [0, t;], removes from B to C with the change of the
energy curves by unloading. Then the ball climbs up toward the
maximum point D on the energy curve of q = 0 by expending the
kinetic energy.

If the ball cannot reach the point D, the ball returns the
initial equilibrium position A. This means no occurrence of the
dynamic buckling. From its observation, a sufficient condition
for stability against dynamic buckling can now be derived as
follows including the case of multi-degrees-of-freedom systems:
If the total energy at t = t; does not exceed the minimum value
of the relative maximum points or saddle points near the initial
state on the strain energy curve of q = 0, the system is stable.
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Analytical Formulation

Let us consider the nonlinear equations of motion:

Md+kd +g(d)=gq @D
where M, K, 4, g(d) and @ are mass matrix, stiffness
matrix, displacement vector, nonlinear terms and load vector,
respectively.

If we introduce the function
. T ) T oy
V=4 M d+ dKa+20(d , 4 =g(d) (2)

which is propotional to the total energy, dV/dt (= V) along the
solution of Eq. (1) takes the form:

V=2 éTq (3

Then from the schwartz inequality
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with #(t)={aTM1'q} , it follows that the function satisfies
the differential inequality

V(D <2p(t) vE(e), (5)
Integration of Eq. (5) yields
V%(t)gV%—(o)-i-/o)td#(t)dt . (6)

Inequality (6) gives an upper bound on the function v (:¢) along
the solution of Eq. (1).

Hence, the sufficient condition for stability, which mentioned in
the previous section, can now be written as

1 t 1
VT(O)-F/O'dy(t)dtg[d*TKd*—FZU(d*)]T 7



where d* represents displacement vector which gives the minimum
value of the relative maximum points or saddle points of the strain
energy surfaces for q = 0 as mentioned in the sufficient condition
for stability. In other words, a” corresponds to the critical
equilibrium point in the vicinity of the initial state (see Fig.
2), and can be obtained by using the static load-deflection curves.

Tn the case of the rectangular loading with the time duration
of tg, Eq. (7) becomes

p<( @K a¥+20(a¥)) By (8)

which gives the relation between the critical load level and time
duration since the critical load level 4., is determined from

Peor = { qTM_lq} .

Tllustrative Examples

Consider the simply supported shallow shells with the con-
strained inplane displacements shown in Fig. 3.
The following nonlinear equation of motion and compatibility con-
dition are adopted[4]. '
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R = SHELL RADIUS
h = SHELL THICKNESS

P = MASS PER UNIT
VOLUME OF SHELL

v = POISSON'S RATIO
E = YoUNG'S MODULUS
D = Eh¥12(1-v?)

Shell Geometry
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Let us represent the vertical displacement W and the load P as

Ty

. . T . . .
W=w (¢t )sin sin , P=P, sin sin (11
a a a
and introduce the nondimensional quantities:
E
A=W, h, T:ﬂzh«/Tt S a? V/3(1—v?)
(12)

A=q? /72 Rh, ¢=3a*(1—22)p, /7* Eb*,

If the Galerkin method is applied to Eq. (9) after obtaining the
stress function F from Eq. (10), the equation of motion with one
degree of freedom corresponding to Eq. (1) takes the form:

d? A
dr?

F( 14k, 22 ) A=k A AT +ky A® =¢ a3)

where

k, =606, k, =548 and k=132 .

The existence of the static load 9, for t < 0 was considered
in the present numerical analysis to examine the influence of the
dead load on the dynamic critical load levels. 1In its case, it
was necessary for the reference coordinate system of Eq. (1) to be
transformed to the load level 4¢; along the static equilibrium path
before we used the analytical procedure mentioned in the previous
section.

Fig. 4 shows the critical load levels under two kinds of step
loadings ( tg=e< ) for various shape parameters ( 2 is defined in
Eq. (12)). 1In the figures, d, , 4, , 9, and 9, denote the static
buckling load, the static load for t < 0, the dynamic step load in
the case of ¢ = 0 and the additional step load, respectively.

Fig. 5 and 6 show the relations between the dynamic critical
load level (9, + qj) and the time duration parameter (T4/To) for
A=5and 10 . To represents the natural period of free vibra-
tion at the point of the static load level ¢;. Present results are
good agreement with the numerical integration results by means of
the Runge-Kutta-Gill method as shown in figures.

A defect of the present approach is that curves by the energy
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criterion have a tendency to approach to zero as time duration
increases, which makes a sever design criterion. So, in the region
where Tq is comparatively large, we had better to adopt the critical
load levels by the step loading, which are plotted by dot-dashed
lines in these figures.

Numerical examples of multi-degrees-of-freedom systems have
been presented in [5].
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