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Abstract

This paper deals with the direct numerical integration methods
for large scale differential equations. A method to evaluate the
numerical integration in s-plane and z-plane is given, and several
integration operators are evaluated by using the method.

Next, new direct numerical integration methods for large scale
differential equations are proposed on the basis of the results
obtained above, and numerical computations are made by using the
electronic digital computer programs in terms of the proposed
methods.

After the computations, the evaluation method of numerical
integration is found to be reasonable, and the proposed methods of
direct integration to be suitable for large scale problems.

1. Introduction

Tn recent engineering fields, analysis of large scale struc-
tures or industrial systems has been very important. As a method
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obtaining approximate solutions of governing equations correspond-
ing to physical systems, especially large scale structures or
industrial systems, the finite element method has been quite remark-
ably developed.(1),(2) This finite element method is a one which
discretizes the system being of interest and can be adaptable to
both linear and nonlinear systems. In the finite element method
analysis, the equations which govern the behavior of the systems
have to be usually solved in time domain to obtain the dynamic
responses of linear systems or the step-by-step responses of non-
linear systems. The problems which arise in the analysis are
generally characterized by large scale, sparse, and real symmetric
properties in coefficient matrices of differential equations.
Particularly, because of largeness of the order of matrices, their
eigen—values distribute widely in eigen-plane, and this may come

to unstable phenomena in numerical integration. To avoid these
unstable phenomena in numerical computations of practical problems,
computational times are excessively required. Therefore, an effi-
cient and stable method is eagerly desired to be developed(3)
obtaining an approximate solution of differential equations of the
problems in time domain (a numerical integration method).

Various methods of numerical integration for ordinary dif-
ferential equations have been studied. 4)~(20) But it is generally
difficult to know the best method in applying the numerical integra-
tion to practical problems, because evaluation of precision and
stability of the method can not be easily and systematically done,
and furthermore differential equations dealt with in practice vary
from several orders to several thousand orders in their size.

From the point of view described above, this paper concerns
the following studies; (1) Proposing a method to systematically
evaluate the basic characteristics of the numerical integration
method and evaluating typical existing numerical integration
methods (integration operators) based on the proposed method, (2)
Proposing new numerical integration methods for large scale
ordinary differential equations (particularly, for second order
simultaneous ordinary matrix differential equations) on the basis
of the item (1).

2. Evaluation of Numerical Integration Method for Ordinary Dif-
ferential Equations
M ; mass matrix (MxM) C; damping matrix (MxM)
K ; stiffness matrix (MxM) A ; system matrix (MxM)

B ; coefficient matrix corresponding to forcing
function (2MxM)

Py ; pth diagonal Padé approximation function



R,S,T,U,V,; working matrices y ; state vector (2Mxl)

x, x.x s displacement, velocity, and acceleration vectors

(Mx1)
£ ; forcing vector u,v,w ; working vectors
F(sz)3 characteristic root of integration operator
c; 3 constant concerning with integration operator
1 3 interpolation order of forcing function
p ; approximation order of diagonal Padé approximation

function
r 3 mesh size in numerical computation

Vectors and matrices containing the subscript 7 denote the
ones at time nrt .

In this chapter, a method to evaluate the numerical integra-
tion method for ordinary differential equations is given, and then
typical existing numerical integration methods are evaluated on the
basis of the method described above. 1In the case of dealing with
a non-linear system, the equation is assumed to be approximated to
the piece-wise linear system, and evaluation of numerical integra-
tion methods is done from a view point of function approximation of
exp(srz) which is the basic solution of a linear system.

2.1 Preparations and Criteria for Evaluation of Numerical Integra-
tion Methods

A linear simultaneous ordinary differential equation can
generally be written in the form of

y=Ay+Bf y (0)=y, 1)

using a state vector y . Now, a forcing function f(t) during time
interval nrz~ (ntl)r is assumed to be written as

l -
£, (nrtp)=£fy (7)=2 fa (2)

i=0 4!

by using the !th polynomial function of a discrete sequence {fp},
where f(” indicates the ¢ th derivative of f(nc) at time nz. Then,
relatlonshlp between the state vectors y,+1 and yy at times (n+l)r
and nt in Eq. (1) is obtained as

Aty ACne? pCnvDT TAlpe (9)ay (3)

Yn+1=e Yate nt



Substituting Eq. (2) into Eq. (3) and integrating the equation, we
obtain

This is the difference representation of Eq. (1) and is the basic
equation to compute numerical integration of the differential equa-
tion by an electronic digital computer. We call eAT a state
transition matrix and it can be calculated by its definition

3!

GAT: :§0LAZTi . (5)

The second term of the right hand side of Eq. (4) is the numerjcal
integration term corresponding to a forcing function. If fn(l) is
assumed to be

%) _

n

f( szn/ti (6)
by the difference of a data sequence {f,}, difference equation (4)
can compute a solution from an initial condition ¥, by means of a
step-by-step method. This gives the exact solution to every
computational mesh size 7.

Now let us consider the characteristics of difference represen-
tation (4). Here without loss of generality, an arbitrary value s
instead of A in eigen-plane of A which has distinct eigenvalues and
a scalar value b instead of B can be used in Eq. (4). Consequently,
Eq. (4) is simply written as

' ! . .
— Ty X (g Sty g1 @)

Va1 =0

where, ¢, is

[

((e*T1) /6 2 eini/(Cimi) e ™'Y} D

j=0

Z transformation of difference equation (4)' gives a relation

Y(2)=H(z,s7) F(z2) (8)



between a forcing function F(z) and a solution ¥Y(z) , where
H(z,st) is given by

l z 8T
H(Z, sT): P %qz(z—l)/(z—e)_ (9)

7=0 T

Eq. (9) is the transfer function related to # operator containing
a parameter sz. If F(z) is applied to Eq. (8), the solution ¥(z)
of the differential equation having a characteristic root s for
every time mesh 7 is obtained. Because of the reasons described
above, the transfer function H(z,s7)and the difference equation
which is equivalent to it, will be generically called an integra-
tion operator (or simply an operator). When the denominator and
the numerator of the transfer function must be distinguished, we
call them a state transition operator and a forcing operator,
respectively.

Let the function derived from the transition operator be zero,
that is,

z —¢°" =0 (10)

This is called the characteristic equation of the integration
operator, and the root ¢’T is called a characteristic root or a
pole. The exponential function is the exact mapping which trans-
forms a differential equation into a difference equation. But in
practical numerical computations, because of the reasons which
will be described in section 2.2, an approximation function F(s7)
to exp. function is used as a state transition operator. Con-
sequently, in the case of evaluating the integration operator, it
is reasonable to refer the characteristics of exp. function as a
criterion.

The criterion used herein is as follows:
(Criterion); A value on the imaginary axis in -plane is trans-
formed into

z:eiwr':léwr, §s—=1i O 1)

in z-plane by exp. function. This is the mapping from an ‘ez in
st-plane into a value on the unit circle in z-plane. Accordingly,
the operator F(iwr) must enoughly approximate the characteristics
of Eq. (11).
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Fig. 1. Mapping relationship between sr-plane and z-plane

2.2 Evaluation Method for Numerical Integration Method

Computing a differential equation based on the Eqs. (4) and
(5), the solution can exactly be obtained. But the computation of
¢AT in terms of the right hand side of Eq. (5) needs so huge
amount of treatments and memory capacity that this is not practical.

Therefore, in general, the approximation function is adopted
instead of exponential function. We can obtain

)
Rp(sz') Y= 75 1 Rp_i(st)ynﬂ_i ‘;—_é:OTj(ST) f i (12)

by means of the approximation function F(s7z) from Eq. (1) in such

a way that one obtained Eq. (4) by means of ¢%7 from Eq. (1) having
a characteristic roots . Z transformation of Eq. (12) reduces to
the relation

Y(z)=(Q(%, st)/P(? st))F(%) (13)

where, P(z,s7), and Q(z,s r) are
p .
P(2 st)=XR, (st)za? (14)
i=0 ’

and



l
Q (2, st )=23 Tj(sr)zj (15)

i=0

respectively. P (2,57)/Q (2,s7) in Egs. (13) ~v (15) obtained by
using the approximation function F(sz) correspond to the theoretical
integration operator g (z,s7) in Egs. (8) and (9), and in this case,

P(z, st)=0 (16)

is called the characteristic equation. Typical existing numerical
integration methods are listed in Table 1 in the form of Eq. (16).
In order to evaluate the methods based on the criterion described

in Section 2.1, the characteristic root in Eq. (16) which may be

reduced to z=F (sr), is considered.

F(s7) is written as
t=F(iowt)=|F(iot)|LF(iwr) 17)

by the same way as Eq. (11) when s=iwr . | F(iwz) | and LF(iw7)
are called gain and phase, and are put

|F(ioyr) |=d , L Fliw,0)=0, 7 , (18)

Corresponding to the nature of the function, F(iot) may have
various gain and phase characteristics shown in Figs. 2(a) and
2(b).

Now, let us consider numerically integrating an undamped
vibratory system having a natural frequency @, every time mesh 7 .
For example, if we use an integration method having (G-c) and (P-c)
properties in Figs. 2, the root of a state transition operator

F (i®ot) is regarded as the root in z-plane shown in Fig. 3(b).
Once more inverse mapping from a root in z-plane into a root in
st -plane comes to the pole distribution shown in Fig. 3(c).
Accordingly, it can be seen that if we use the method described
above, the solution 4wz (in Fig. 3(a)) on the imaginary axis of
sT-plane consists with the solution gr+{@¢7 in s7-plane solved by
the exact method. In the example herein, the real part and the
imaginary part of the solution

or= In| F( i@, v) |<0 ' (19)

5y t=LF(iw, t)<wg T (20)



Table 1.

Characteristic equations of various integration

operators and Padé approximation functions

Integration Method

and Approx. Func. Characteristic equation
Adams Bashforth | 72_ (14357/2)Z+57/2=0
Adams Bashforth | 73 _(142357/12)2%+4ST/3-2-557/12=0
Adams Mouiton (1-5ST)Z*- (1485 T/12)Z+ST/12= 0
HieRS Ty | £~ (ST ST T4 -0
Milne Z* -(4ST/3+8S°T%/9) - (1+ST/3-45°T%9)7°
(@) -8S2T%/9Z-ST/3=0
Milne Hammig 872*-(9+65T+85*T) 2% (3ST+457 T2 )2Z°%
modified -(8%%72-1)Z2-3STt =0
Stiffly stable 2nd [(3-2ST)Z*-4Z+1=0
Stiffly stable 3rd |(11-6ST)Z*182%97-2=0
Midpoint trapezoidal| Z°=(14ST/2+S*T%)Z-ST/2=0
Houbol ¢ (1+NfwnT/6+wn21%/2) 7> (5/2+3(,’w,,'l‘)Z2
+(2430 WaT/2)2-(1/24bwp T /3) =
(1+Lwn T+BW3T2) 22~ 241 +(B- ) wn?T3}Z
Newmark- f3 jﬂ gwnT+Bw3'ﬂ)
(b) CiZ3+C,22+C4Z +C, =0, +92wrcfe3w2 2%
, 0 Ca=(1- 39)+(1+20—392)wr§‘(1+39+392 383)w /6
Wilson - Cool 02+ 300 1+ g™ g e
& (1-8)- (9229+1)wrr 30-1)w?r/6
Eul
(Pagéehriqh pass type) | £~ (1+S7) =
Backward Eul
() (Padé T:)c\lﬂrpos‘sjfyrpe) (1-S7)Z-1=0
(Peaa R g 314 | Z- (145 T+57T%/24 5°T%6) =0
(Pod e it b | Z- (+STHS?TY2 + 53T/ 6 + $*T*/24)=0
Diogonal Padé¢ Py, |(1-ST/2)Z-(1+ST/2)=0
(d) | Diagonal Padé Py, |(1-ST/2+ST¥12)Z-(14ST/2+5°T712)=0
: (1-ST/2+S°T¥10-5°T17120) Z
Diogonol Padé Pss —(1+ST/2+ST?/10+§°T¥/120)= 0
Note (a) Integration operators for general use
(b) Integration operators for 2nd order ordinary dnfferentlal
equation, and {T,wnt disignate ST=-{wnT +il1-LZwx) 2,
(c) These are not only the operators for general use but also
the families of Padé approximations to exponential function
(d) Diagonal Padé approximations

— 29—
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Fig. 2. Characteristics of numerical integration operators F(st)

ya

: 4
ST-plane A[/ Fie) l%‘ ST -plane
X 1wl /n

X
\ Z—plane dé\ OT+i Wel
~ Wl ~ [
0

0 0
. ® X
X-iWgT - OT-1Wel
(o) Characteristic roots of  (b) Characteristic roots in {c) Characteristic roots of
the original differential Z-plane mapped by expo- numerical solution by F (+)
equation in ST — plane nential function and F (+) in ST-plane

Fig. 3. Relationship between characteristic roots given by the
theoritical solution and the numerical solution



are obtained and this solution is recognized to be solved as a
damped lower frequency solution compared with the exact one.
Similarly, all of the curves in Figs. 2 can be characterized to
any one of (O ~ (® . The characteristics of an integration
operator can be classified to an arbitrary combination of gain
(® ~ ® ) and phase characteristics (@ ~ ® ).

@ G-a; o0>o0 :- Numerically unstable characteristics

® G-b; o=o0 : Gain flat characteristics

® G-c; oc<o : Numerically damped characteristics

® P-a 50 > wy ¢ Frequency increased characteristics

® P-b; wy=wy : Frequency consistent characteristics
5 0 0 y

® P-c ; Wy < wy : TFrequency decreased characteristics

0 0 q y
2.3 Evaluation of Numerical Integration Method

Several typical integration methods were chosen from Table 1,
and then evaluated by the method described in section 2,2, At the
same time, diagonal Padé approximation functions to exponential
function listed in the last of Table 1 were evaluated by the same
method. Gain and phase characteristics are shown in Figs. 4 and 5.
Characteristics of integration operators for general use of
ordinary differential equations are shown in Fig. 4 and those of
integration operators for second order ordinary differential equa-
tions are shown in Fig. 5. The characteristics of Padé's approxi-
mation functions are also shown in Fig. 5. Here, we are worth
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- method Il
L ]
05 10 |! ' ?. Il.]IO.O . . .59. ”11(]),0 wT
1] LR l L T T T T rr ll

0.5
Adams Bashforth—Adams Moulton method

Midpoint - trapezoidal T~
rule method

~——

Fig. 4(a) Gain characteristics of integration operators for
general use



paying attention to that Padé's approximation functions are con-
siderably superior from the point of view of the integration
operator evaluation.
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Fig. 4(b) Phase characteristics of integration operators
for general use
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Fig. 5(a) Gain characteristics of integration operators for 2nd
order ordinary differential equation and diagonal Padé
approximation functions
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order ordinary differential equation and diagonal Padé
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3. Proposal of Direct Numerical Integration Methods for Large
Scale Ordinary Differential Equations

In this chapter, new numerical integration methods for solving
large scale simultaneous ordinary matrix differential equations
which arise in dynamic analysis of structures and system simula-
tions are discussed.

3.1 Necessary Conditions and Integration Operators for Numerical
Integration Methods

3.1.1 Necessary Conditions for Numerical Integration Methods
Necessary conditions required in direct numerical integrations

by an electronic digital computer are summarized as

(1) Fundamental characteristics (precision and stability) of the
numerical integration method can be systematically evaluated,

(2) Numerical stability is guaranteed,
(3) Numerical precision is high,

(4) In computation, small amount of treatments is required and
sparsity and bandness of a matrix can be effectively made use



of,

(5) Small memory (store) capacity is required and internal memories
and external memories can be easily treated by simple routines,

from a view point of design specifications of an integration method
for large scale ordinary differential equations.

The items (1) ~ (4) and (4) ~ (5) correspond to the design
specifications in the case of making integration operator and
integration algorithm, respectively.

3.1.2 Integration Operators Suitable for the Numerical Computation
of Large Scale Ordinary Differential Equations

Integration operators suitable for the numerical computation
of large scale ordinary differential equations are considered on
the basis of the results obtained in sections 2.3 and 3.1.1. The
most suitable function describing the state transition operator is
the family of diagonal Padé approximation functions Ppp with which
we concerned in chapter 2. That is the diagonal Padé approximation
function has the following excellent properties; (1) Precision of
the approximation function Ppp increases regularly with the
approximation order p and precision and stability of P,, as an
integration operator can be simply and systematically evaluated,
(2) The function Ppp as a state transition operator is numerically
stable, (3) Precision of P11 is as well as that of Newmark-f method
and precision of Pj9 is much higher than that of P11. Furthermore,
if we consider the stage when integration algorithms are made, the
following properties are added to the items described above; (4)
Amount of treatments in computation is small, (5) Memory capacity
required is also small.

From the above considerations, the studies are limited to the
numerical integration method based on the diagonal Padé approxima-
tion function to the state transition matrix A% . An integration
operator based on the diagonal Padé approximation function is
designed, made, and evaluated.

3.2 Basic Formulas of Numerical Integration Method

3.2.1 Basic Formulas for First Order Ordinary Differential Equa-
tions

Basic formulas for first order ordinary differential equations

are described as Eqs. (1), (3), and (4) in chapter 2.
When non-linear systems are dealt with, these equations are

assumed to be approximated to piece-wise linear systems.



(a) Approximation of Forcing Vector

Equations which seem to be particularly important in practice
are listed in Table 2 .setting !=0 and 1 in Eq. (4). The forcing
vectors for ! =0 and 1 correspond to step-wise and ramp-wise
approximations in time domain, respectively.

Table 2. Difference equations derived from approximation of
forcing vector

/ Ditference equation ':‘[’,Lcri{,‘,?i,xf,ﬂg;
AT AT —1 {0)
O YnH: e y|'|+ (e - I) A Bfn fn(n)=fn Efn

You= € Yo+ € A'Bh-A Bt | f(1=f71)
(& DA Bl 1) /T | =)

(
n

(b) Approximation of State Transition Matrix

The pth diagonal Padé approximation function (expansion formula
with real coefficients),

1

A= Pop :D;»p "N s (21)

_ % p! (22—k)!
P k=0 (2p)1(p—k) ! k]

D, (-a7)" (22)

N (A7)=D
? R

B,

» (—A7) (23)

is used as an approximation to the state transition matrix AT

Equations for »= 14 of Eqs. (21) ~ (23) are listed in Table 3.
Next, a representation being equivalent to Eq. (21) is con-

sidered. The Ppp in Eq. (21) can be alternatively represented as

Az - ! . 24

¢ e_zpmunc,z7 Nmp (24)
P

DC,p—kI:I](I_AT/ c’ﬂ) (25)

NCm(AT) Dcm( )



using the complex coefficients (expansion formula with complex co-

efficients). Complex coefficients ¢ for p=1v4 of Eqs. (24)~(26)
are listed in Table 4. The values ¢; correspond to the roots of
Eq. (25).
Table 3. Approximation formulas of the state transition matrix eAT
(expansion with real coefficients)
P DR‘p ’ NR.p * Ppp**
1 I 7 4F [+AT+- +{‘m}+
2 5
2 [ 745+ a0 I +AT+~--+BA4? +-
— AT | (ATV— (aT)’ (AT)’
3| I35+ 120 I+AT+ +[4800 -
3T~ (A7), (AT)? 1.969x10
4 | I3 +300 T 6+ 1e50 I+AT+"'+[169344 “T’]
Note % For Ngp, the signs of lower part of each row are selected
%% pth Taylor expansion coefficient of eATis (AT)p/p/
Table 4. Roots of diagonal Padé approximation functions
Ck
P Tk real- part imag - part
111]2.0 0.0
2 113.0 1.732050
2] 3.0 -1.732050
1]13.677814 | 3.508761
312]3.677814 |-3.508761
3| 4.644371 0.0
11 5.792421 1.734467
4 215.792421 | -1.734467
314.207578 | 5.314835
4]14.207578 | -5.314835




(c) Difference Formulas using [ th Forcing Vector Approximation
and » th State Transition Matrix Approximation

First of all, equations by using the expansion formula with
real coefficients in the p»th diagonal Padé approximation function
to the state transition matrix eAI are considered. Substituting

Eq. (21) into (4).
! (4)
D y =N y + Z’(AI—DR , A2)Bfn (27)

R,p n+ 1 E,p n =0 ,
A1=i§ {2 21 (2p=m) L2 (p—m) It ) J™ g™~ EFD)
1=1,3,5: (28)
i—l_l i—r. —(r+1)
A2—1'=207 (i—r)!
are obtained. Difference equations for (=0, 1 ; »=1v4 of Eq. (27)
are listed in Table 5. :

Table 5. Difference equations for single order ordinary differential
equation by using diagonal Padé approximation functions

p[* !
1] (=25 =1+ 3509, + 2B (£ 4 1)
, (1-BT+ATF )y (1 +AT4BIN)y
+?B(fn+1+fn)'——_8(fn+1_fn)
L | (1 BTl BIL)y,, = (1+Af %) arr )yn
+> B(fn+|+f ) TZ—B(an— fn) '20 B(fn+|+fn)
AT 3(ATY (AT (AT) AT  3(ADC (AT (AT)
4 (I-5+%8 ~8aties0 ) n+1_(I+_+ 28 T 8a "i680 Yh
+ LBt - ALB fy — £+ KL B+ )= 1hs B foer — )
Note % In case of £=0, fo, is replaced by f, (i.e, foy—fo)




Next, equations by using the expansion formula with complex
coefficients in the »th diagonal Padé approximation function to the
state transition matrix eAf are considered. Substituting Eq. (24)
into (4), one gets

D v = N, y,+ (A —=D_ A, )BS @ (29)
n .

Cyp n+1 C, » n =0 C,

Then, substitution of a discrete representation

Aym — D) 5 ol (30)

n n -
n

of the derivatives of Eq. (1) into Eq. (29) gives the equatiomns
listed in Table 6 for =0, 1 ; »=2. As for the equation for »=1,
it is consistent with the equation listed in Table 5.

Table 6. Difference equations for single order ordinary differential
equation by using diagonal Padé approximation functions
(expansion with complex coefficients)

1
p 0 1

(I- & A Wosi= TAY,+ TBE, (LA Ww=TYn+ & Blfy,—f,)
TA yn+|=TAyn_4"/gIm(wn+1) Tynﬂ = Tyn _4"/§Im(wn+l)
2 Yor = Y, + Re (Wn+1)_\/31m(wn+1) yn+1 =Y+ Re(wnﬂ)_*/glm(wnﬁ)

Wt = (Yns ‘yn)—C_TZA (Your=Yo) | Wnat =Yan ‘Yn)"CL2 (9n+l ‘9n)

c, = 3 + i4/3% C, = 3 — V3

3.2.2 Basic Formulas for Second Order Ordinary Differential Equa-
tions

Let us consider the equation

MX +Ck+Kx=f (31)



arising in structural dynamics. In the case of dealing with a
non-linear system, the equation is assumed to be approximated to
the piece-wise linear systems. In order to represent Eq. (31) in
the form of Eq. (1), y, A and B must be written as

R
ot . , = — 1 —1 — — 1
=1z -M K —-M C | M

in terms of M, Cand K . Here, denoting a discrete variable at
time t=nT as :

X I
SRR
X X ’

n- n

(32)

a difference equation is obtained using the variable V.
Firstly, when the expansion formula with real coefficients in
the pth diagonal Padé approximation function is used to the state
transition matrix eA? , desired formulas can be obtained by sub-
stituting Eqs. (32) and (33) dinto (27) . Doing this, the formulas
for (=0, 1 ; »=1, 2 are obtained and listed in Table 7.

Table 7. Difference equations for single order ordinary differential
equation by using diagonal Padé approximation functions
(expansion with complex coefficients)

A 0 1
PR-01; PR-11;
RXni=Txn —2KX, +2f, RXny = TXn —2 KXn+(fopt )
1] Xow=Xn +3 (XnitXo) Xnst =Xn + 5 (Knu+Xn)

.x.nﬂ:‘.x.n + % ( xn+|‘in)+M_I(fn+1_ fn) inﬂ =- .x.n + % ( in-ﬂ_in)

R= £M+C+5TK , =ZM-C-ZK
PR-02; PR—-12;
R S|(x] —[us|(x] 4[tfs R 8|(x] <[V 8|[x|+{ Z(fnitty
ST, (SV|x, |o S T/ |k, (S V)|X)y |- Stfaf)

n
¥ oa% 4 Big 1y )-l12 _ v e . .
2 Xni =Xt T (Xnﬂ"'Xn) T2 (Xn+1 Xn)) Xny=Xnt % ( xn+1+xn)_1?22( xnﬂ_xn)

+Ml(fn+1~fn )
R=C+TK, S=M-5K, T=—(FM+IC
U=C-ZK, V=ImM-&¢C




Secondly, let us obtain the difference equation using the
expansion formula with complex coefficients as the pth diagonal
Padé approximation function to the state transition matrix A
Desired formulas for ¢ = 0, ! = 1; »= 2 (PC-12 method) are obtained
as Table 8.

Table 8., Difference equations for 2nd order ordinary differential
equation by using diagonal Padé approximation functions
(expansion with complex coefficients)

P ! 0 1
PC-02; PC-12;
Rw,.,=— TKX,+C,Mi,+ T, R Wy, =T KXt CiMkn+ 5 (£, + fo)
Xns1 = Xt Re (Wog )= v3 LWy ) ~ &L (0 o)
2 | #nn=kn— 2 1 (wo) Xos =Xn+ Re (Wnst)—¥3 In(Wnst )
R = Kot £ (s +X0= 2 s~ %n) | K = X = 55 T (Woer)
+ M (frir =) | Ko =Kot ko +Xo) =Xy = %)

Wny = (xnﬂ‘xn)_?‘_gl_(inn_*n) s = % M+C +g_1 K
o 3+ iJ3

Formulas for higher order of » (for example »=3) will also be
arranged, but descriptions are omitted herein.

3.3 Algorithms and Their Performance of Proposed Numerical Integra-
tion Methods

3.3.1 Algorithms of Numerical Integration Method

The algorithms which were made by the basic formulas obtained
in section 3.2.2 are presented. The results are listed in Table 9.
In order to analyze not only linear systems but also non-linear
systems, the algorithms are given in the form of a piece-wise
linearization.



Table 9. PC-12 algarithm of proposed direct numerical
integration method

PC —-12 Algorithm

1) Computation of several coefficients and setting initial values

0, =(3+iV3)/ T, ap=T/(3+i1/3),b1=6/T, b, =12 /T2
by =4 vV3/T, by=T/2, bs=(3+iv3)T /12,¢,=3+i V3, n=0

2) Computation of the initial coefficient matrix R,

Ro = a, M, +C, + 0. K,

3) Decomposition of the matrix R, into L and R matrices for 4) -2
(LR decomposition of R,)

4) Repetition for a computational time increment

"® y == TKn Xn+ Cy Mn *n“' b4( fn+1+ fn)— bs (fn+1_fn)
® Ry Wonit =Y — Wiy, is obtained
@ Xn+, =X, — by I (Wnyy ) — Xn+1 s obtained
@ Xonsr = Xn + Re (Wnsy )= 3 Im (Wap) = Xns1 is obtained
@ KXoy = Xp+ b1().(n+1+).(n)— bs(Xpsi~Xn) = Xns is obtained

@ Judgement of linearity of the system, if the system is linear,
the flow must be jumped to , and if nonlinear, it jumped to(®

@ Judgement of the variation of a coefficient matrix R, if the
elements vary, the flow must be jumped to(7), and if not, it
jumped to (®

@ Computation of the coefficient matrix Rns

Rn+i = @y Mn+1 + Cn+1 + a2 Ky

Decomposition of the matrix Ry, into L and R matrices for
4)- { LR decomposition of R,,,). Jump to

@ Replacement R, by Ry, because of the invariance of the matrix elements

‘ntt = Rn

L~ {0 Replacement n by n+1, then return (D

Note; Rn ,Y, W, ., are complex vectors, Re( ) : real parT
Xn+1,)'(n+,,in+1 are real vectors, Im( ) imog. part

3.3.2 Performance of the Algorithms

Properties of the proposed integration methods and other
typical integration methods are studied from the view point of
performance of the algorithms. In table 10, memory capacity, amount
of treatments in computation, and theoretical precision are listed



making performance of algorithms clear. Matrices considered are
all assumed to be real banded. Almost same memory capacity is
required in PR-11 (see Table 7), Newmark-f, and Wilson-6 methods,
and Houbolt and PC-12 methods require about 1.3 times memory
capacity of three methods described above. If the processing speed
of a complex multiplication is assumed to be about half that of a
real one, PR-11 is the fastest, and Newmark-fg, Wilson-6 Houbolt,
PC-12 methods follow in computational speed. PC-12 method is the
best, PR-11 and Newmark-B methods are almost same and Wilson-0 and
Houbolt methods follow in their precision. In synthetic perform-
ance, PC-12 method seems to be the most superior to other methods
because of the extremely high precision in the method.

Table 10. Comparisons of characteristics of each integratiomn
method (for asymmetric matrix)

Amount of treatments ¥
Method Memory capacity Precision
Multiplication Addition
PC—-12 24 +b+11M 2a+b+9M 20 +b+12M O[Hrf]
PR =11 30+ 6M 3a+2 M 3a+10M | 0[(s7)?)
Newmark—f3 3a+8M 3a+5 M 3a+ 8 M O[(sr)3]
|
Wilson— 8 3a +10 M 30+ 7 M 3a+ 9M | GF(5r))
less equal
Houbolt da+7M 4a +8M |  4a+12M 0((st)3)
f ; Band width, M : Matrix size, a ; for real, M
Note * % 2+1 M
0=b=M+(l-1)(M-4—), b; for complex

*  This value indicates the one for a single step
%% When the matrices are symmetric
a=b=M+(£-1(M- L1y /2

4, Numerical Experiments and the Results

The aim of this chapter is to numerically confirm the fact
that has been theoretically described in chapters 2 and 3. A
computer program was made on the basis of the algorithm given in
chapter 3. Furthermore, programs of the typical integration methods
considered in chapter 2 were prepared. The programs numerically



computed the problems of a simple structure (a single mass-spring
vibratory system) and rather complicated structures (multi mass-
spring vibratory systems).

4,1 Numerical Experiments of a Single Mass-spring Vibratory System

In this section, the evaluation method of the integration
operator described in chapter 2 will be confirmed by the computa-
tional results obtained by the programs of each integration method.
A single mass—-spring vibratory system shown in Fig. 6 is considered.
The differential equation of the system is written as

. 2 _

Fig. 6. Single undamped mass-spring
vibratory system

Forcing function applying to the system is a unit step functiom.
Inditial response of the system was computed by each integration
- method. Expérimental condition for numerical computations is @,
= 1.0 (wg? = 39.473418 (rad/s) (f, = 1.0 Hz), T = 0.1591549 s).
Computational results are shown in Fig. 7.
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Fig. 7. Camputational results of a single undamped mass-spring
vibratory system by using various numerical integration
methods (in case of wyT=1.0)

By the results obtained from the curves in Fig. 7, the character-
istics of each integration method described in chapter 2 were
numerically confirmed and consequently, the evaluating methods of
numerical integration given in chapter 2 were proved to be appro-
priate.

4.2 Numerical Experiments of Multi Mass-spring Vibratory Systems
Z-shaped beam, shear beam, and T-shaped beam were discretized
to multi mass—spring vibratory systems by means of the finite

element method and were numerically computed by each integration
method, and computational times required were compared with each



other. The results are listed in Table 11.

Table 11. Comparisons of computation time for each integration
method used (Computation was done for 1,000 steps and
step size was 0.0ls)

e e £ o |shear tyee | T MOS0
2| ““eedom | 60 30 24 | note
2| band wigth | 21 3 15

PC-12 [2.15.72| 22.06 | 40.31
g|PR-11 [1.11.13| 10.52 | 19.57
g |Newmark’s| —  [1.20.25 | 52.11 | =+
2 lWilson- 6 | 2.10.44| 27.79 | 26.91 | 6 =1.40
ZlHoubolt |3.38.25| 55.89 | 37.12
" lrks — |11a59 | —

% Newmark-83 method indicates generalized Newmark-8 method
developed by Chan. Computations were done by obtaining
inverse matrix, so the comparisons are not fair, If the
computation will be done by solving simultaneous equations,
computation time is only needed almost equal to that of
Wilson—8 method

IBM 370/158 K, min. sec. 1/100sec, — 3 diverge

From the discussions in sections 4.1 and 4.2, PC-12 method
was proved to be the best one with respect to precision and PR-11
to be the most effective one to computational speed.

5. Conclusions
From this study, the authors obtained the following conclusions; -

(1) It was proved that noting the distribution of the roots of
characteristic equation of integration operator in sz-plane
and in z-plane is effective as a method of systematically
evaluating an integration operator. Considerations on the
characteristic equations and characteristic roots of integra-
tion operator gave the evaluation results of operators and



they were summarized in figures and tables.

(2) The diagonal Padé approximation functions to exponential
function were shown to be excellent as an integration operator
by the result of evaluation of many integration operators.

(3) New direct numerical integration methods, PR-11 and PC-12,
were proposed for large scale ordinary differential equations.
The methods were found to be superior to Newmark—-Bf method or
Wilson—-6 method.

(4) By the results of numerical computations, the characteristics
of integration operator evaluated in chapter 2 were confirmed,
and consequently the evaluation method proposed herein was
proved to be reasonable. Furthermore, the numerical integra-
tion method, PC-12 proposed in chapter 3, was found to be the
most suitable one judging from the synthetic performance with
respect to memory capacity required, computational speed, and
precision in the methods with which we concerned for large
scale ordinary differential equations.
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