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by
Tadahiko KAWAIL) and Masaaki WATANABELTL)

Summary

As far as the authors know, concrete theoretical basis of the
tsunami problem has not yet been established because of the complex
nonlinear behavior although much attempt has been made in the past{
Today, however, it is known that the nonlinear dispersive wave
equations can describe such a wave as tsunami nicely. The RdV
equation might be one of typical examples of these equation and it
is derived under the assumption that the weak nonlinearity and the
weak dispersion are well balanced. In this paper, using such non-
linear dispersive equations including KdV equation, finite element
analysis of the tsunami problem is proposed and results of numerical
analysis on some simple problems are shown in good agreement with
the results of previous studies.

Introduction

Tt is known that the tsunami will take place due to sudden
disclocation of the ocean bottom caused by the earthquake. It is
believed from witness' reports that the tsunami consists of three
independent waves in almost all the cases, and in some case the
first wave may be of the highest, while in other case the second
wave may be of the highest, and its propagation in the far-field
could be explained by the solitary wave theory. .

For the last 10 years keen attention has been focused on the
analysis of the KdV equation in many fields of physical science and
engineering. The KdV equation was derived by Korteweg and de Vries
in the courses of the theoretical study on the shallow water wave
problem in 1895, and they were successful in obtaining the cnoidal
wave solution. This is a steady solution of the KdV equation and
the solitary wave solution can be derived by making the period of
the cn-wave solution infinitely large. The original form of the
KAV equation which describes the small but finite amplitude wave is
given as follows:
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where 7 is the wave height, % is the uniform depth, ¢ is the
gravitational acceleration, and ¢y =v %% .

In 1965, using the KdV equation in the plasma physics, N.J.
Zabusky and M.D. Kruskal showed by their numerical experiment that
these waves are so stable although they interact and observing such
a characteristics like particles they called a solitary wave
'SOLITON'.

In 1966 D.H. Peregrine first proposed the following equation
to analyse the 'bore' problem numerically:
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where u 1is the mean horizontal velocity. Eq. (2) is of the same
order of approximation as the KdV equation.

In 1973 J.L. Hammack conducted the numerical analysis of the
tsunami propagation in the far-field by using above equations and
he confirmed good agreement between the results of numerical calcu-
lation and experiments. 1In other words he found that when the rise
up of the water surface takes place in the shallow water of the
constant depth in the channel due to the sudden vertical deforma-
tions or some another reasons, wave propagation will occur and
they will resolve into several solitons and tails as it propagates.

The nonlinear theory which include no dispersive effect as
well as ‘the linear theory which is related to the Cauchy-Poisson
wave theory has been proposed in the past to predict the tsunami
propagation, but none of them was successful to explain the
phenomenon that the several solitons will appear when the sea bed
deforms vertically in an instant.

However, eqs. (1) and (2) which can be derived by assuming
that the weak nonlinearity and the weak dispersion are appropriately
balanced can account for the phenomenon discussed above. ’

In the following sections, derivations of eqs. (1), (2) and
other equations will be briefly described and the numerical results
will be also shown with some discussions.

For numerical analysis of this kind of problems, the finite
difference method has been mainly adopted, but the present authors
believe that the finite element method could be more practical and
flexible to compare with the finite difference method in analysis
of complicated boundary value problems or extended application of
the proposed theory to the two dimensional problems.



1. Derivations of the KdV and other analogous equations

If it is assumed that the fluid is incompressible and the flow
is irrotational, a velocity potential ¢ =¢ (x, y, t) can be in=-
troduced, hence from the continuity equation the field equation is
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The boundary conditions on the free surface are
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where it is assumed that the surface tension can be neglected.
The boundary condition at the bottom can be assumed as follows;
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in case where the wave behaviour in the downstream region is con-
sidered. Eq. (6) may not be applicable to the region of the wave
origin, instead the equation including the time-dependent bottom
deformation should be used.

Using the characteristic quantities h and C,, egs. (3) ~ (6)
are non-dimensionalized as follows:
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It should be mentioned that the same notations occasionally will
be used both in dimensional and non~-dimensional forms because the
resulting confusion may seldom occur.

The nonlinear dispersive waves in the shallow water is con-
sidered. Introducing the very small parameter ¢ which represents
the weak nonlinearity and the weak dispersion of the medium, the
following coordinates transformation is applied to eqs. (7) ~ (10).

g=c/t (11)
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Then the field equation (7) and the boundary conditions (8), (9),
(10), take, the following forms respectively:
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Next, it is assumed that the dependent variables 7 and ¢ are
expanded into the power series of ¢ as follows:
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Substituting eq. (17) into eqs. (12) and (15), and arranging them



in the power of ¢ , the integrated terms of the velocity potential

with respect to y are finally given as follows:
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where F (£ ,t ) is the arbitrary function. It should be mentioned
that eq. (18-a) shows that¢(l) to the lowest order of ¢ is in-
dependent of y, that is, corresponds to the basic assumptions in
the linear long wave theory that the vertical component of the
velocity is zero and the pressure distribution is equal to the

hydrostatical ome.

Substituting eqs. (16) and (17) into the surface boundary condi-
tions of eqs. (13) and (1l4), and using the relations of egs. (18-a,

b,c), the following equations are obtained:
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Noting eqs. (19-a) and (20-a), and defining the horizontal velocity
by +W=09¢1,9¢& , the long wave equations in the linear theory are

derived as follows:
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Now the elevation from the statical water level and the mean
velocity potential are defined approximately, and they are given
by the following equations respectively;
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From eqs. (19-a,b), using the above variables, the following equa-
tion is obtained by neglecting the higher order terms of ¢ whose
power is greater than 2.5
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This is the continuity equation.
From eqs. (20-a,b), the momentum equation is expressed as follows:
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With changing back to x and t, and introducing the mean horizontal

velocity defined by u::a@i/a:z , the basic equations in the
shallow water problem are obtained as follows:
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where the bar of 7 is omitted.

In the above two equations when a wave propagation in one-direction
is only considered, the following approximate relations between wu
and 7 can be obtained:

N 1, 1 % u

N = u+—4u +—6— 7107 (27-2a)
. 1, 1 90*

u = 9 —Iﬂ 6 diow (27-b)

Substituting these relations into eqs. (25) and (26), and neglect-
ing higher order terms, the following equations are derived:
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Assuming that from the linear equations between # and 7 shown by
eq. (21), the following approximate relation of the differential
operators can be adopted:
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eq. (27-a) can be expressed by
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J.L. Hammack (1973) obtained the good numerical results by using
eqs. (28-a) and (30).

Replacing §/9¢ of the left-handside of eq. (28-b) by-4, 9, , the
well-known KdV equation can be derived as follows:
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From egs. (25) and (26), the Boussinesq equation can be also
derived.
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2, Theoretical formulation by means of the method of weighted
residuals

For analysis of the propagation problem of the tsunami waves
in the downstream region, the present authors adopt the KAV equa-
tion, because eq. (28-a) and eq. (31) are of the same order of
approximation and both equations have solitons as their stationary

solution.
First of all, the following transformation is applied to eq. (31)5
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‘With this transformation, the following generalized KdV equation

can be obtained.
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The associated boundary conditions and initial condition can be
given by the following equations respectively;
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The solution for general initial-boundary value problems can be
considered and in case where the following initial condition is
selected:

9(r)=4 sech® (VA7)

it is not difficult to show that the solution of eq. (34) can be
given by the following equation;
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where A is the amplitude of a given soliton and it can be seen that
the phase velocity is proportional to the amplitude A.
In order to develop the finite element method of analysis of eq.



(34), eq. (34) should be modified to Galerkin type variational
equation by using the method of weighted residuals, and such pro-
cedure will be briefly described as follows;

The following weighted residual integral of eq. (34) is
considered:
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in which the weight function &8¢ should satisfy the prescribed
boundary conditions. Preforming the integration by parts and
applying the boundary conditions eq. (35), eq. (38) can be finally
transformed into the following Galerkin equation:
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Basing on this equation, finite element discretization now can be
made in the following way. Since it is known that the soliton tends
to become zero at a sufficient distance from its center and there-
fore it may be always possible to truncate the region of integra-
tion such that the error resulting from truncation can be neglected.
The truncated region of integration is now devided into a finite
number of elements, the displacement function of which is defined

as follows!

¢ = LNJ{¢} (40)

where | ¢ ] is nodal displacement vector of a given element
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and | N | is the shape function defined by the following equation:
(See. Fig. 1)
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Fig, 1 Transformation of
element shape function

Using the displacement function eq. (42) and following a standard
technique of the finite element method, the matrix equation can be

derived as follows:
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For the time integration, the following scheme is adopted:
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L 48] is the increment of | {n) during the time increment 4t from
=170 and the following scheme for time derivative is also adopted:

(E)=r(a0)- (%) (46)

This is an implicit and step by step time integration scheme, and
the following matrix equation of incremental form can be derived by
substituting eqs. (45), (46) into eq. (43) and neglecting the higher
order term of | 4 ¢ |:
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Solving this equation successively at every time step of 47 , the
unsteady problem of the solitons can be studied.

It should be mentioned that in the present analysis an elementary
scheme is adopted for time integration, and more elaborate scheme
such as Newton-Raphson method should be employed in case where more
accurate analysis is required.

Numerical examples and discussions

In order to show the validity of Galerkin equation eq. (38) so
far derived and accuracy of the method of solution, three simple
numerical examples will be given. Fig. 2 shows the result of
numerical calculation which was made by using Newton-Raphson method
in order to check validity of the proposed finite element method.
It should be noted here that the analysis was made with respect to
the coordinate fixed to a given soliton and result of this numerical
analysis showed in good agreement with the exact solution. Fig. 3
shows a result of numerical analysis of a non—-stationary problem by
using the linearized expression for the displacement increment
L 48] to check parallel movement of a soliton and again accuracy of
the analysis was duly shown by this simply example. As the third
example, comparision was made on the result of the finite element
analysis of two solitons' interaction with the analytical solution
of the same problems. In the finite element analysis of this
problem two solitons at t=0 are given by the equations in Fig. 4.
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Fig. 3 A Simple Nonstationary Problem Analysed by Incremental
Approach

It is also assumed that initially the soliton of higher amplitude
was located behind the smaller one. With time going by, the

former will soon overtake and pass the latter. They may influence
each other in a complicated manner, but after interaction they will
be separated each other again changing the order, but without chang-



ing their shape as well as amplitude. It should be mentioned here
that phases of two solitons, however, may be changed between before
and after their interaction. That is, the phase of the soliton of
higher amplitude may increase while that of smaller amplitude may
decrease.

In the numerical analysis, however, it is not easy to trace such
variations. The result of the finite element analysis is shown in
Fig. 4, while that of the analytical solution is shown in Fig. 5.
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Fig. 5. Analytical solution of two solitons interaction by the
inverse method [Segur (1973)]. The larger soliton's
amplitude is 0.3 and the smaller is 0.1, and they are
sufficiently separated at the initial state. T the basic

time and 4t the time increment; 4t = 1.0, — at
T+ 22 4t, and ——-—--——~- at t = T + 37 4t.



The analytical solution was obtained under the assumption that two
solitons were sufficiently separated each other.

In order to cut the computing time, initial condition was given at
the time as long as the principle of superposition of two solitons
can be assumed although they are interacted, and because the initial
conditions in these two solutions are different, strictly speaking
it is not possible to compare the numerical result with the
analytical solution, however, it can be observed that the nonlinear
mutual interaction is nearly consistent each-other.
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Fig. 6. Generation of solitons from an arbitrary initial state,
initial values of {(x,0) at nodal points are given
artificially, time increment; 4t = 0.8, at t = 0.0,
————————— at t = 6 4t, and at t = 12 4¢t.
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Fig. 7. Interaction of three solitons (initial) conditions; {(x,0) =
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A2 = 0.2, 62= 20.0, 43 = 0.1, 63 = 28.0), time interval;
t =10, ———— at t = 0.0, —- at t = 10 4t,~———
at t = 15 4t, and -----=------m-- at t = 25 4¢t.




Basing on the study on the validity of the proposed method and
accuracy of analysis, analyses of several examples simulating
interaction of several solitons are made.

The generation of the solitons from the arbitrary initial condition
is shown in Fig. 6. Behind the solitons, a 'tail' is created.

In the present analysis Newton's forward difference scheme was
adopted for calculation of initial values. This mesh division may
not be accurate in the case of such tail analysis and the more
elaborate scheme should be selected. Fig. 7 shows the interactions
of three solitons. It can be observed that after their interaction
they are separated again just like in case of two solitons' interac-
tion shown by Fig. 4. It should be also mentioned that the 'bore'
is created at the time of the interactions. This situation may
suggest the new concept of 'tsunami' in explaining its change of
wave form in shallow water. TFig. 8 shows the simulation when the
bore is adopted as the initial condition. This bore is equivalent
to the shock wave physically. From this figure, it can be seen
that the front of the bore heaps up. For analysis of this case,
the Galerkin equation which is different from eq. (39) was used
because the first equation of the boundary conditions, eq. (35) is
not same.

Fig. 8. Development of bore,
oscillatory shock wave
(initial condition;
¢(x,0) = H/2 (1-tanhox/2),
H=0.1l, o = 4.0), time
increment; 4t = 1.0,

at £t = 0.0, —— "

3 4t, —--— at — x

at t =
t = 10 4t, and ~———-----
at t = 18 4t.

Using eqs. (25) and (26) studies are made on the interaction
of two solitons of the same amplitude travelling in opposite direc-
tion and/or reflection of a soliton after its collision with a



vertical wall. By introducing the weight functions 67 and 6 «

and multiplying them to eq. (26) and eq. (25) respectively, Galerkin
type variational equations are derived as described in the previous
section. For the finite element analysis, the incremental approach
is adopted for analysis of nonstationary problem and as the nodal
parameters up to the first derivative of w and % are considered and
Hermitian third order polynomials are used for the shape function

of a given element. As for the initial value of the wave height,

a soliton solution which is the solution of KdV equation, while

the initial value of the velocity is calculated from eq. (27-b).
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Interaction of two solitons travelling in opposite directions
(initial) conditions;
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R.E. Meyer (1963) showd by using Boussinesq equation eq. (32) that
the principle of superposition is almost justified when the wave
amplitude is small. And J.G.B. Byatt-Smith (1971) discussed that
eq. (32) is correct as far as the first approximation is concerned



and by deriving an equation which include the second order terms to

a certain extent, he also showed that when a soliton of the amplitude
H collides with a vertical wall, the maximum wave height may be given
by the following equation;

MMx=2H+%H”+O(Hﬂ

The authors' result of calculation shown by Fig. 9 were not in good
agreement with the result of analytical solution.

This may be attributed to improper selection of the initial value
and use of different equations. In general Boussinesqs equation is
slightly different from the KdV equation although both of them may
have a soliton solution.

The result of numerical calculation showed that the reflected have
is produced by collision. It is considered that production of the
reflected wave may account for reduction of the amplitude of a
given soliton due to collision. For more detailed analysis it may
be necessary to use the finer mesh division and the smaller time
interval.

T. Takutani (1971) and R.S. Johnson (1972) derived the KdV equation
for the dispersive water wave propagating along the uneven bottom.
TIn this case, the boundary condition at the bottom is different
from eq. (6) and is given by the following equation;
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where B(x) is the bottom surface.

Introducing an infinitesimal parameter ¢ which represents the
dispersion and nonlinearity, the following transformation of
coordinate system is applied to the problem considered;

%
T

—t) , X=¢ (49)
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and assuming development of dependent variable as given by egs.
(16) and (17), and using the following relation

d (X)=1-B(X) (50)

the following KdV equation for n M, the first perturbation term of
7, is obtained;
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applying the following transformation

pW=g 4 n(x, &) (52)



to eq. (51), it is finally transformed in the following form;
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It should be mentioned that each coefficient of eq. (53) is a func-
tion of X . Using eq. (53), R.S. Johnon (1972) showed by the theory
and numerical experiments that when a soliton in the region of d =1
travels up along the slope and enters into the region of 4= d
(<1) n solitons may be produced in the region of d;, where n is a
integer and it is given by the following equation;

3 _
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dg=C(n(nt1)) %
Conclusion

From the discussion mentioned so far it can be concluded that
as far as one dimensional problem is concerned it may be possible
to predict realistic behavior in propagation of a tsunami.
More precisely, for the early stage of a tsunami initiation the
linear theory may be applicable, while as the wave propagates the
nonlinearity and dispersion becomes balanced and during this stage
the KAV equation may be used for prediction of the wave propagation.

Tn case where there exists continental shelves, eq. (53) may
be adopted. It may be considered that depending upon the situation,
these theories may be combined and matched appropriately in order
to predict actual behavior of a tsunami with sufficient accuracy.
However, the actual tsunami propagates on the surface of the earth
in two dimensional manner and then phenomena of refraction as well
reflection may exist, and consequently the propagation may be in-
fluenced by these phenomena in very complicated manner.
Therefore prediction of the two dimensional wave propagation must
be extremely difficult to compare with the one dimensional problem.
For analysis of such a problem the finite element method may be
particularly important and powerful.
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