A SUGGESTION OF GENERATING A PHASE

RESTRICTED PSEUDO-EARTHQUAKE MOTION.
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This paper is summariezed from the paper which was presented to the
2nd meeting of the U.S, - Japan Joint Seminar in Applied Stochastics.
This seminar had been held in Washington, D, C. from September 19 to 25
this year under the sponsorships of National Science Foundation and Japan
Science Promotion Society. The anthors would like to express their grate
thanks to the very hearty discussions of Professor Kozin, Professor Isobe and
other participants. The part of this paper was changed as the result of their
discussiopns.

1. Introduction

In the previous report(l) for the 1lst joint seminar, 1966, the authors
commented that the possibility of using the step response of a multi-degree -
of-freedom system as a pseudo-earthquake motion,

There are several reports(2, 3, 4) on the statistical analysis of complicat -
ed systems. But in this paper the authors will describe the procedure to esti-
mate the next step response of the system, of which characteristics is com-
plicated and fluctuating, through the observation and analysis on the group of
the previous responses. The continuous rod or layer of which cross-section
is not uniform but almost uniform along its axial co-ordinate, so-called a
disordered system is used as a theoretical model. The block diagram of the
authors procedure is shown in Fig. 1.

It is very difficult that we obtain the many records of the strong earth-
quake motion at the specific point. But if we obtain several of them, we could
estimate the properties of their pathes by assuming the pattern of their
statistical distributions. Analyzing the wave form of each sample (record) and
expressing its characteristics with its eigen-frequency distribution, we could
say the average and variance of their cross-sectional parameters in a certain
accuracy according to the number of samples. This is the first step. And
the second step is estimating the nature of the step response of the system
sampled randomly from the population, of which characteristics have been
decided statistically at the first step. To evaluate the statistical natures of
these samples is also the job of the second step.

1) Associate Professor, Ph, D.
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This report starts the theoretical analysis of a one-dimensional wave
equation possessing randomly distributed parameter for the second step block
in Fig. 1. : :

2, Fundamental analysis

The authors introduced a one-dimensional wave equation for their funda-
mental analysis of this subject, and used the disordered rod system subjected
by longitudinal vibration for experimental analysis.

The basic notations are as follows:

u(x, t): displacement solution along the axis x

u o, 1)t u(x, t)of the corresponding uniform (undisturbed) rod

x : co-ordinate of longitudinal axis of rod
r (x) @ radius of rod
s (x) : cross-sectional area of rod
a : velocity of longitudinal wave
To : mean radius
13 ! time
Y/ : length of rod
e : density of rod material
E : elastic modulus of rod material
DUXT) 4 (10gs(x)) 2UETL UL D) 1)

Here a capital letter denotes a dimensionless value of the variable which
is denoted by a corresponding small letter, for example,

X=—32—,T=ﬁ U(X, T)=Ulx, t)/0

and so on. In the case of the rod infinite long, ¢ might be introduced as a
standard length.

2.1 Step-response

We assumed S(X/. is known, then P(X) dimensionless cross-sectional para-
meter becomes given. If the change of cross-sectional parameters is caused
by only that of cross-sectional area,

r(x)=7,( 1 +P(x)) 2)
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Hereafter, we assume

P(X)=0(c) | dl;ggf):me)

for 1> e |.

d{ log S

AL SX) _ pdBX) 11 _p(x)+0(e)
(3

then we put

Q=R _prorer), | (4)
the physical meaning of Q(X) is going to be described later.
Here, two types of differential operators will be introduced.

o2 o2 o

Li=gxe—372 » eLi=2Q) 3% )
then eq. (1) becomes

(Lo+¢Ly)-UX, T)=0. (6)
Then

U(X, T)=Us(X, T)— { 2Q(X)9U—°g§5ﬂ} Q)

could be led, assuming L,U (X, T) to be L;U,(X,T). This means the
neglects of the terms of which orders are higher than &2 .

ol
oX

if Q(X) is known, eq. (7) can be easily solved.

The solution of the undisturbed rod, Us,, are already known, and

The reflective rate a of strain wave at the point, where the cross-
At the farther points than lines OA and OB in Fig. 2,

U—U,— {f QEN-X+T)dE + [(FQ(e)-—2& (5

X LTS [ Q(«E)(Z(E—X+T)d£}

can be obtained, by using Green's function approach over the shaded area in

Fig. 2.

The reflective rate « of strain wave at the point, where the corss-
sectional area suddenly changes from $1 to s: , is

o — So— 81 (9)

Se+S1
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If the cross-sectional area changes gradually as

s@—rrd(14P@)7, o =L ar/25= L& ax /(14 p), a0)
therefore
o =P (1 px)ax - Q(X)dx. an

Through the analyses of this section, the terms of which order is higher
than &? are neglected. This corresponds to take the only one reflection at
the mid-point for all pathes into account.

The step response in an each section in Fig. 3 is written as follows.
For the section 21

ou__ F [au
2X  Es, 0X,i_,

o 0 (1— [7Q(8)dg)

T=X+2i=~2

Lpi-1 pit i‘A:M_ Q(&)dE —bi~2 b} (Z—l)fx rr2i Q(&)dE
bbbt i [T ) dE by b~ 1) [ Q(8)dE ¥

and for the section 2 i + 1
ou__ F {ai
aX E.S‘o aXZi

Fob i [T TTQUENE —by b [ QE)ME (12)

+hh=r i 1— [ Q&)

T——X+2i

Fob-bh i [ QUE)dE —b b [ QU845 ]

here b, and b, are the parameters expressed the boundary condition at the
both ends, for the sections 1 and 2, it becomes the simpler form.

2.2 Statistical expression of the step response

If the sectional parameter or P(X)is known completely, the time history
of the step response can be written with the eq. (12). But if we know only the
tendency of the cross-sectional parameter, then we can only say the tendency
of the step response.

P(X)and dljl)?() are assumed to be described two statistical density

functions »(P) and q (d_lij(%l) . Here we assume that there two density functions

would be independent each other.

Hereafter in this section the authors refer only to the result of the rod which

is fixed at an end and is free at the other end where step force input is given.
Variable m and ¢? denotes space average (in the sense of time average)

and variance respectively. And suffix refers to those of it, for example my’
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denotes the average of —‘;% . Every terms of eq. (12) can be developed as

[ atgrag = [ 9EEL (1P (8))dg my —mp (13)

7
For an integral like I :[) Q(&)ds , we can treat it, in the relation to

eq. (13), as the sample for ( 0 , # ) drawn from the population (0, 1).

If we draw the samples whose number is N from the population whose num-
ber is n , the average of samples converges to the average of the popula-
_N-n

nN—1) 7.
This relation can be extended to our case as follows:

(I) = n(mp —mpp:)

(1) =(1—7) 7(ch +0%p ) , (14)
bere  I=["Q(&)ds,
Then those of strain for the period 2 i +1=T=2i—1
QU/DX) =— 4= [1+(= 1) +2 { (1) (i—D)—1
+ (= 1)1 2i (T—2i +1) (mp —mpp) } ]

tion and their variance converges to

(15)
({8U/6X—0U,/0X } %) — 4(f F i (0% +0%p) (T 42
+D(T—2i+1)(T—-2i+1) ,

‘here we should note that (- ) and{ (- ) ) refer to ensemble, but mp, mp, 0%
and o'3,. refer to space, and (9U/2X)is equal to the average of the corespond -
ing undisturbed rod { {QU/2X—2U,/0X}?) is the function of time shown in

Fig. 4. At T =1, 3,5, ----- the uncertainty vanishes completely, but between
such moments. the peaks of the uncertainty of response increase quadraticaly.
We assume that P and fl—;}— would have normal distribution independent
each other, that is
1 —
PP) = e
Oy
27 % b - (16)

“%E

, 1
P _ = €
YP) =~ o
Then the density function of P-P’ would be obtained through the following
integral, -

s (PP )= g5 [[ s PP -alPJap-aP” . a7

If P and P’ are independent each other, the following relation should
be held mppr =mpmp', OPp'— 0} 03, so the average and variance of strain res-
ponse in this case z.re
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so the average and variance of strain response in this case are

F A
(0U/BX) == {1+ (1) .
Es, ) (18)

( {BU/BXBU,/0X}?) = 4 (= it (= T+2i+1) (T-2i+1) o'} (1409).
3. Analysis of eigen-frequencies

In this section, the authors analyze the eigen-frequency distribution of
the model expressed in eq. (1). The statistical behavior of eigen-frequencies
can be estimated by the similar procedure that was described in the section
2, '

3.1 Solution for deterministic system

By substituting U = U - e¢*”’into eq. (1), then

T -5 (logS(X)) dX'*£* 20 =0 (19)

is obtained. The relation,

d(logS(X) .,d(log 1+P(X)) 1 dP(X)
g3 . pdllog UL PIX)) 2iXPy X (20)

could be approximated by putting 9 ‘%{Q instead of

dP(X)
290 q—p(x)) .

Here P and P, are, respectively, eigh-frequencies of a disordered rod
and those of the corresponding undisturbed rod, and we assume the following
relation to be held

p*—pf + epf. (21)

By using the similar type differential operators which are used in the section
2, eq. (19) can be written as

My +eM))T =0, ‘ (22)
here
2 2
M():dd)(z +%p%
23)
dP d | ep? (
Mi=2-% axt Pt

Through such a procedure we obtain

o dP dU,  £&* .57
[]:[]()’—51\40—‘1 [ZdX dXO+ ZU] > (24)
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by substituting U, instead of [ in the left hand side of the equation.
It is assumed that the radius of a rod could be expanded with Fourier
series as

r(X)=r,([1+¢€{ 21 (ajcos2mjX +bjsin2zjX)} ] . (25)
By inversing eq. (24), the solution becomes

— (A cosAof X+ B sink, ﬁX)/ﬁ#éleglo [‘é“

cos(Aj —A,)4X

« [ijaj { ‘COS(Ajﬂ‘lo)ﬁX_F ir +kay ;
o*k) j j
sin(Aj +24,)¢X sin(d; —lo)ﬂX}

Q R;

0 Xsind, 20X}, —éljbj {

G+k)
by (S0 ERILX Ly veoan o
0

y {—ijaj{ sin(Ajgao)ﬁX+
: J

+2]L

b J +5

sin(lj _AO)'QX}—kak Sin(/lj +/10),€X
j i

cos(Aj — A, )QX}
R;

Jih
ﬁXcos/l 02X}, +2 i 4 COS(/ljé?—/lo)ﬁX+

+kbk feos(Aj 424, )EX
Qj

+ 2/1 £ Xsindo X}, _, H

—e& A 21 Xsindo 4 X— XCOS/1 £Xt,

here

Aj:2]l kr

ﬁ 3 A'0_ ﬂ R
- (’lj ~f—lo)2—i—/1§ , Rj=— ()vi _/10>2+/l§

and we differentiate eq. (26) by X and fit it to the boundary conditions,
free -free,

- d0
dX] X=0 x<1 0. 27)

{ —cos(Aj+A,00X ‘
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Then the characteristic equations can be obtained as follows:

((2e7Ae { <., _ 24 kb
[ ¢ Al l?—4k§+810}} A

i¥k

2e T, —2(A5—212) Tka; &pt
+{AO+——g { 2 ai A (A2—423) _8/10} 2, a?

{26 Ao, _hud 20 kb 8p§ﬁ}A (28)

}B:O

, o TR g Ter, e

+ [ Ao+ 287 . —2(AF—213)  Tka kbkﬁ ep N
R R e e MRS s LRl

Again by neglecting the terms of which orders are higher than &? eigen-
frequencies for a free-free rod are obtained as

pf =p4h 1—2¢ea ), (29)
for a fixed-free rod

B IS jb; ,

pE=pd{ 1+ peo El 4jz (Zk—l)z} (29"

According to its boundary conditions, only sine terms or cosine terms of
eq. (29) are effective. For some condition, only one correspondint term is
so. Some results of numerical calculation are shown in Fig. 5.

3.2 Statistical evaluation of eigen-frequencies of disordered rod population

We assume that there are many rods and that we would have the statisti-
cal information about their radii r(x) (Fig. 6).

Here p(r(x)) is the density function of r(x) at the specific point x for
the disordered rod population. We should assume that ensemble mean of
radii, {(r(x)) and that of square radii, (r?(x)) would be constant at all points,
and that the radius r(x) of the specific section would not corelated to that of
other sections, that is,

{r(x)+ r(y)y= 0. (30)

These two assumptions coincide with the assumption in the section 2, that
P(X)and P’(X) are independet each other and described by two-dimensional
Gausian distribution function.

Again we consider the case in which the boundary conditions of rods are
fixed-free. So the authors start their analysis from eq. (29'). At first b;
should be estimated from the information on 7(x) .

by — /;gr(x)sinzjzx dx , (31)

Toe,g
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for one of the disordered rods, then by taxing their ensemble average eq. (31)
can be rewritten as

bj)= iﬁ k/;[<7‘(x)>sin2j%dx, (32)

and

To

. 2f . 2k
{bj .bk>=r§61T£2foE (A‘Q'r(x)-r(y))smzj% Sin Zy doc-dy. (33)

From eq. (29') the estimated mean value of eigen-frequencies can be
written

o —vh | 14150 5 IO } (34)
and by substituting’ (b;) with eq. (32)

<p/?>:p(2>k [1+ 7”017!6ﬁ ].21 4]2_ ng_1)2ﬁ£</r(x)>Sln2"]g7[x = dx] (35)

The variances of pf—pé are
256p% SRS jn
A Pf‘pgk}”:Tgﬁﬁzé 2 [{ 4j2— (2k—1)?} {4n*— (2k—1)?}
xﬂﬁ‘/;[ (r(x)r(y)) sin ijx sin—zngy dxdy} (36)

According to the assumption described in eq. (30) and others, they become

(pk) = Db, (35"

({ pp—pa )2y = 128p8 (r2(x)) =

- .
N TR TS 9

4., Experiment

As the authors mentioned it already, several steel rods are used as a
model system. A rod is supported by piano wires and rubber pads at an end.
To measure the strain semi-conductor type strain gauges are used with cathode
ray tube oscilloscope. Stepwise force is given by the hammer which has the
similar diameter and its round head. dr

A disordered rod R of which the inclination of radius dx and the length
of each section are decided independently from a random number table,

Both values are chosen from the table of nine-step value accordint to the digits
of a random number table (Table 1). Rod R is 3 m long.

Several rods U, T and others are used to compair the result to the exact
solution, so rod U is a uniform undisturbed rod and rod T is a uniform
tapered rod. The lengths of both rods are 1 m.

The velocity of a longitudinal wave in these models is 5120 m/s, and the
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time required for going up and down of the wave through rod R is approximate
1.2 ms,.

Some examples of wave patterns are shown in Figs. 7 and 8.

In the case of numerical experiment the authors neglect the effect of the inter-
nal dampings.

Although the acceleration wave obtained by theoretical analysis of the con-
tinuous model contains all components of frequency, the wave pattern of the
experimental model is observed to be more oscillatory than that of the continuous
model because of the stronger effect of damping to the higher frequency com-
ponent .

The varying range of the cross-sectional parameter of the model is not
enough to simulate earthquake waves, because in this model the parasitic
vibration caused by multi-reflections at discontinuous points is weaker than
the fundamental vibration.

The authors tried to estimate the eigen-frequency distribution by analyzing
such response waves. Scuh waves are deterministic and periodic and not
satisfy the conditon of power spectral density analysis. But we often applied
the PSD technique really without knowing the exact nature of the waves which
we want to analyze, and as a result we should conclude that they might be
nearly periodic. The earthquake analysis is one these examples. In Figs.9
the estimated power spectral density of the step response of rod R is shown.
The arrows in this figure show the eigen-frequencies which were obtained
through forced vibration experiment. In Table 2 and Fig. 10 also the relative
values of the eigen-frequecnies of rod R are compaired. Tendencies of these
curves seem to coincide rather well, but the deviations from unity are some-
times opposite. And this fact gives very poor result for estimating the
cross-sectional parameters of a rod as the authors refer it later.,

5. Estimation of cross-sectional parameter

As the authors mentioned above, we can estimate cross-sectional para-
meter of a rod or an earthlayer along the wave path. '

But, we should assume that a system would be almost uniform and the
deviation of the cross-sectional parameters are small enough, Through such
analysis we could know the eigen-frequency distribution as the deviations
from those of the corresponding undisturbed system. So, if we do not know
about the eigen-frequency distribution of the undisturbed rod, we should sub-
stitute the ensemble average of the eigen-frequencies of their samples for them.

In the case of free-fixed boundary condition, from eq. (29') we can obtain
the n elements linear equations,

n s 2
1?[8 jgl 4]2i (pé()]::—l)z b] zpﬁ_pgk k=1,---,n (37)

So we can determine b; exactly, if we know PE—p8 (k=1,---,n) deter-
ministically.

26



Using the eigen-frequency distribution the estimated co-efficients a7,
are obtained as the figures in the right-hand side columns of Table 2.
The original values of a;r, are also shown. The result is very poor in this
case,

6. Conclusion

Through this article the authors described an idea of simulating strong
earthquake motions. Even though there are several weak -points, the authors
could show the detail on each blocks in Fig. 1.

To apply this method to the real earthquake record, we need the farther
studies. The authors assumed an almost uniform rod or layer which involved
only small fluctuation of parameters inside. But real systems usually consist
of at least several segments of such almost uniform rod or layer. It is not
clear that the system which consists of only one almost uniform segment could
be substituted for such a real system. It seems to be not possible, because
the density of the eigen-frequencies of a real system are more dense than
those of the simplified system. Then the next problem is how to separate the
train of eigen-frequencies to those of each segments.

They also assumed that an independent step input is applied on the system,
but in a real system it might be a train of several inputs. They do not know
the nature of such a train, but we could assume the nature through a statisti-
cal approach. This kind of problems was already discussed by Professor
Ang.(4) Estimating the response of the almost uniform system to the input train
which is described only statistically is another new problem.
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Table 1. Dimension of Rod. R

) Unit: mm
i 0 1 2 3 4 5 6 7 8
Diameter d; 38.000 39.000 43.800 42.333 38.333 38.333 36.333 37.267 42.600
Location of section £; 0 150 330 550 750 940 1090 1230 1430
[ 9 10 11 12 13 14 15 16
Diameter d; 39.667 35.867 41.200 44.800 39.200 40.667 37.467 40.000
Location of section £; 1650 1840 2040 2220 2430 2650 2810 3000
Table 2. Eigen-frequencies of Rod R
Dimension-less eigen-frequency Eigen- Cross-sectional
Number Pk / Dok frequency | parameter a7,
of mode Theoretical lj“orce?d PSD . Rad/sic : —
k vibration | analysis x 10 Estimated Original
1 0.985 0.987 1.035 0.536 - 0.0748 — 0.03042
2 1.016 0.998 1.038 1.07 - 0.0797 — 0.03234
3 1.037 1.021 1.038 1.61 — 0.0797 — 0.07480
4 0.982 0.984 1.000 2.14 -0 — 0.03620
5 1,028 1.028 1.052 2.68 - 0.1095 — 0.05667
6 0.995 0.996 1.010 3.22 — 0.0200 — 0.00993
7 0.992 0.988 1.016 3.75 —0.0349 — 0.01619
8 0,995 0.995 1.016 4.29 — 0.0349 — 0.01010
9 0.993 0.990 1.018 4.83 - 0.0378 — 0,01442
10 0.999 1,007 1.019 5.36 - 0.0395 — 0.0200
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Fig. 1. Flow chart of simulating strong earthquake motion
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Fig. 5. Effects of rod shapes on eigen-frequencies
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Fig. 6. Samples from rod population
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Fig. 9. Power spectral density of strain response wave
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