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1) Introduction

The numerical analysis of three~dimensional elastic bodies with arbitrary
shape, load, and boundary condition has become possible by means of the finite
element method, V> But, from the view point of the practical analysis, it must
be noted that even with big computers the capacity of the computation is restricted
to a rough mesh of element division. The simplest finite elements for three-di-
mensional solids in the form of tetrahedron have their stiffness matrices of a
large dimension of ( 12 x 12 ). Further, by dividing the three~-dimensional solids
into appropriately fine mesh of tetrahedrons, the number of the nodes can easily
reach to many thousands. Necessity of tremendous amount of computer storage
and the capagity of solving large simultaneous equations limit the scale of the
problems which can be treated within the range of realistic computing time.

However, if we confine the problem to the solids of revolution with their
geometry symmetrical with respect to an axis, the treatment becomes much easier.
For example, in the axisymmetrical problems such as a thick-walled cylinder sub-
jected to inner pressure the necessary unknown displacements are equal to those
in the two-dimensional problems and the equilibrium equations formulated for one
section passing through the axis of revolution are enough for the solution.

Similarly, for the non-symmetrical loading cases of the bodies of revolution,
if the external loads vary in a sinusoidal manner in the circumferencial direction,
the equations derived for an arbitrary axial section would represent the equilibrium
for the whole body, because the resulted stress distribution should have the same
circumferencial variation. This approach by circular harmonies is suggested by
the authors of the literature (3). It is anticipated that the Fourier expansion of
the external loads will facilitate the solution of the non-symmetrical problems of
bodies of revolution.

In the present paper, the stiffness matrix of a ring element with triangular
cross-section is presented for the case in which the circumferencial variation of
the nodal forces and displacements are given by circular harmonies. The deriva-
tion of the stiffness matrix will be discussed in the literature (4).

As the actual application, the result of analysis of a prestressed concrete
pressure vessel subjected to seismic horizontal body force is presented.

2) Loads, displacements, stresses and strains

We define the loads, displacements and stresses of a three-dimensional
elastic element in the cylindrical co-ordinate as shown in Fig. 1 and 2.
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For the loads and displacements, we assume that they vary according to trigo-
nometric-functions. They can be written as
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- We take, as the basis of the analysis, a ring element with triangular cross-
section, the vertices of which are notated as i, j and k. The following expression
gives the notation of the nodal displacements and the nordal forces of the element,
as well as the assumption of their circumferential variation:
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Here the nodal forces must be taken as line forces on the respective ridge lines,
their unit being such as t/m. ~---- Fig. 3 and 4.
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Fig.3 Nodal displacements Fig. 4 Nodal forces
3) Expression for strains and stresses of the element

Assuming linear distribution of stresses within the triangular cross-section
and using the notation
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where (r; sz, ) (7,52 ) and (7,2, ) arethe co-ordinates of the each vertex,
the strains within the ring element caused by the unit nodal displacements are ex-
pressed by a ( 9 x 6 ) matrix ¢ :

w ) w
e, | B cos nb S0 0 =
€, ’1;01 cos nb -~ a cos nb 0
€. 0 0 7 cos nll | eeeeeeeeieien (8)
- 7,,| ¥ cos nt 0 B cos nb
Tro —%d sin nf (/ﬁi%>sin nt 0
7oz 0 7 sin nd —%af sin nd

Here, for example, the column vector €,; means the strains {Er €y €2 T,y
T,, T.,} caused by the unit displacement u,=cosné - According to the
three-dimensional theory of elasticity, the stresses of the element are o
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: Young's modulus,
: Poisson's ratio.

4) Stiffness matrix of the element
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Fig. 5 Nodal forces at an arbitrary
location in a ring element

The application of the principle of virtual work to a portion sectorial in plan
between the angles ¢ and #+ «f shown in Fig. 5 leads to the equilibrium equation
between stresses and nodal forces.

From this equilibrium equation, we finally reach to the force-displacement
relation of the form
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K _is the stiffness matrix which defines the relation between the maximum values
en
of the nodal forces and the nodal displacements:

Kll KIZ K13
K K
K _(9%x9)= 22 T2 | e (14)
o symmetric
K

_its elements K, ; being obtained as follows:
K, =L {(E ,+2E ,+ E,,+ 2> G )B B+G 1 1} +(Ey+E,+0°G,)
T T 2 T b 2
x (Iz'ﬁ QH'"sﬁ f)+(E12+E22+"’ Gss)([z @ ﬂ+[3fﬁ)+(E22+n Gss)
x {1, da+I (Fr+i"a)+I 77 },
K12= n[ll (Elz +E22 )/‘gTﬁ""(Elz +E22 +Gss ) (IzﬁT‘x+[3ﬂT/7)+E22 (Iz P

+L "B +(E,,+C {1, Fat I (r+r"a)+ 177 } ],

(15)
T
K= [1{ (E13+E23 )ﬁT7+G44f B }+E23 <Izan+13 7,
Ky,=1( n’ EzzﬁT[H""Gee ’fo)'*'nz E, {Iz (Cfﬁ“"ﬁ]d)"'[s (Br+5"B) }
+( "’ZE22+055) {[4 a?"a/-f-js (QC’T(7’+(7TQl’)+IG Vil g }
K= {1 (B Br—GC, i"B)~ Gy (L e+ 10" )+ E,, (L' v+ 1,07 ) }
K= I { kg #"7+(G, +n G YB B} +1" Gy { I, (o BB o)+ I, (B +7F) }
+0° G (I, a+ I (&7 +i"a) + 1,77 }
where I, A R and [, are the integration terms
Ilszrdrdz =T 4,
Izszdrdz =4,
I3=ffzd‘rd,z:'z“A, (16)
L=[fYaraz= L,
L=[[Z drdz = % ,
ez .1 zitzj2 zitzp ozt Py
ly=[f 5 drdz = g { (50 + (=) +H— 4,
and _
T =% (fri+r]-+rk ),
E Z%_ (z;+2 42,
.................................... (17)
1 1 7 oz
d=511 7 %
1 7r 7

11



The approximate expressions for I,, I; and J; are valid under the assumption
that the dimension of the cross-section of the element is small compared to its

radius of revolution

5) Example-stress distribution of a prestressed concrete pressure vessel
subjected to seismic lateral force

As an application for the case n=1, a prestressed concrete pressure vessel of
cylindrical type under seismic horizontal body force was analysed. The computa-
tion was carried out by means of the overrelaxated iteration.

Fig.6 shows the dimension of the vessel, the idealization by triangular mesh
and the assumed acceleration. The distribution of displacements, stresses
at the section #=0 or 0:% are given in the following figures,
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Fig. 10 Displacement in 8 = 0 section
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